首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7779篇
  免费   253篇
  国内免费   273篇
  8305篇
  2023年   75篇
  2022年   82篇
  2021年   82篇
  2020年   108篇
  2019年   151篇
  2018年   189篇
  2017年   102篇
  2016年   124篇
  2015年   124篇
  2014年   382篇
  2013年   615篇
  2012年   266篇
  2011年   360篇
  2010年   253篇
  2009年   331篇
  2008年   353篇
  2007年   370篇
  2006年   315篇
  2005年   331篇
  2004年   286篇
  2003年   267篇
  2002年   186篇
  2001年   158篇
  2000年   118篇
  1999年   173篇
  1998年   152篇
  1997年   129篇
  1996年   130篇
  1995年   134篇
  1994年   147篇
  1993年   99篇
  1992年   117篇
  1991年   104篇
  1990年   94篇
  1989年   117篇
  1988年   85篇
  1987年   101篇
  1986年   86篇
  1985年   117篇
  1984年   149篇
  1983年   94篇
  1982年   119篇
  1981年   95篇
  1980年   83篇
  1979年   77篇
  1978年   76篇
  1977年   50篇
  1976年   50篇
  1974年   26篇
  1973年   29篇
排序方式: 共有8305条查询结果,搜索用时 15 毫秒
961.
Tartrate dehydrogenase catalyzes the reductive decarboxylation of meso-tartrate to glycerate. Concomitant with the ketonization of the intermediate enolate the C3 hydroxymethylene of glycerate necessarily acquires a proton from solvent. In D2O, the proton is shown to be added stereospecifically to form (2R,3R)-[3-2H]glycerate. The 1H-NMR assignments of the diastereotopic C3 protons of glycerate were confirmed by the enzymatic conversion of [1R-2H]fructose-6-phosphate to (2R,3R)-[3-2H]glycerate. The decarboxylation-protonation occurs with retention of configuration, implying that the general acid is positioned on the same face of the intermediate as the departing carboxylate. The stereochemically pure (2R,3R)-[3-2H]glycerate is readily synthesized and serves as a chiral hydroxymethylene synthon as demonstrated by the synthesis of (2S,3R)-[3-2H]serine.  相似文献   
962.
Many new carotenoid synthesis genes have recently been identified through genomic sequencing or functional cloning. Some of them exhibit novel structures and/or novel functions. This review describes such examples in the families of lycopene β-cyclases, putative homologues of phytoene dehydrogenases and new carotenoid hydroxylases. Both the functionally novel lycopene β-monocyclases and structurally novel fusion-type of lycopene β-cyclases were described. Another newly discovered sequence of lycopene β-cyclase described might represent a new class of lycopene β-cyclases previously not identified in several cyanobacteria. Three examples of putative homologues of phytoene dehydrogenases were described, however, they were confirmed to encode different and/or new functions such as β-carotene ketolase, 4,4′-diapolycopene oxygenase or prolycopene isomerase. Two new carotenoid hydroxylase genes were described that encoded the new function of 2,2′-β-ionone ring hydroxylase or 3,3′-isorenieratene hydroxylase. Phylogenetic analysis of these genes shed light on their possible evolutionary origins. These new genes also provide tools for synthesis of novel and desirable carotenoids by genetic engineering.  相似文献   
963.
P450 BM3 mutant can catalyze indole to indoxyl, and indoxyl can dimerize to form indigo. But the reaction catalyzed by P450 BM3 requires NADPH, as coenzyme regeneration is very important in this system. As we know, when glucose dehydrogenase oxidizes glucose to glucolactone, NADH or NADPH can be formed, which can contribute to NADPH regeneration in the reaction catalyzed by P450 BM3. In this paper, a recombinant Escherichia coli BL21 (pET28a (+)-P450 BM3-gdh0310) was constructed to co-express both P450 BM3 gene and glucose dehydrogenase (GDH) gene. To improve the expression level of P450 BM3 and GDH in E. coli and to avoid the complex and low-efficiency refolding operation in the purification procedure, the expression conditions were optimized. Under the optimized conditions, the maximum P450 BM3 and GDH activities amounted to 8173.13 and 0.045 U/mg protein, respectively. Then bioconversion of indole to indigo was carried out by adding indole and glucose to the culture after improved expression level was obtained under optimized conditions, and 2.9 mM (760.6 mg/L) indigo was formed with an initial indole concentration of 5 mM.  相似文献   
964.
Two-dimensional (15)N-heteronuclear single-quantum coherence (HSQC) NMR studies with a di-domain (lipoyl domain+ linker+ peripheral subunit-binding domain) of the dihydrolipoyl acetyltransferase (E2) component of the pyruvate dehydrogenase complex of Bacillus stearothermophilus allowed a molecular comparison of the need for lipoic acid to be covalently attached to the lipoyl domain in order to undergo reductive acetylation by the pyruvate decarboxylase (E1) component, in contrast with the ability of free lipoic acid to serve as substrate for the dihydrolipoyl dehydrogenase (E3) component. Tethering the lipoyl domain to the peripheral subunit-binding domain in a complex with E1 or E3 rendered the system more like the native enzyme complex, compared with the use of a free lipoyl domain, yet of a size still amenable to investigation by NMR spectroscopy. Recognition of the tethered lipoyl domain by E1 was found to be ensured by intensive interaction with the lipoyl-lysine-containing beta-turn and with residues in the protruding loop close to the beta-turn. The size and sequence of this loop varies significantly between species and dictates the lipoylated lipoyl domain as the true substrate for E1. In contrast, with E3 the main interaction sites on the tethered lipoyl domain were revealed as residues Asp41 and Ala43, which form a conserved sequence motif, DKA, around the lipoyl-lysine residue. No domain specificity is observed at this step and substrate channelling in the complex thus rests on the recognition of the lipoyl domain by the first enzyme, E1. The cofactor, thiamine diphosphate, and substrate, pyruvate, had distinct but contrasting effects on the E1/di-domain interaction, whereas NAD(+) and NADH had negligible effect on the E3/di-domain interaction. Tethering the lipoyl domain did not significantly change the nature of its interaction with E1 compared with a free lipoyl domain, indicative of the conformational freedom allowed by the linker in the movement of the lipoyl domain between active sites.  相似文献   
965.
Berberine is an isoquinoline alkaloid isolated from Coptidis rhizoma, a major herb widely used in Chinese herbal medicine. Berberine's biological activity includes antidiarrheal, antimicrobial, and anti-inflammatory effects. Recent findings show that berberine prevents neuronal damage due to ischemia or oxidative stress and that it might act as a novel cholesterol-lowering compound. The accumulation of amyloid-beta peptide (Abeta) derived from amyloid precursor protein (APP) is a triggering event leading to the pathological cascade of Alzheimer's disease (AD); therefore the inhibition of Abeta production should be a rational therapeutic strategy in the prevention and treatment of AD. Here, we report that berberine reduces Abeta levels by modulating APP processing in human neuroglioma H4 cells stably expressing Swedish-type of APP at the range of berberine concentration without cellular toxicity. Our results indicate that berberine would be a promising candidate for the treatment of AD.  相似文献   
966.
ATP-gated P2X4 receptors (P2X4R) are abundantly expressed in the CNS. However, little is known about the molecular targets for ethanol action in P2X4Rs. The current investigation tested the hypothesis that the ectodomain-transmembrane (TM) interface contains residues that are important for the action of ethanol in P2X4Rs. Wild type (WT) and mutant P2X4R were expressed in Xenopus oocytes. ATP concentration–response curves and ethanol (10–200 mM)-induced changes in ATP EC10-gated currents were determined using two-electrode voltage clamp (−70 mV). Alanine substitution at the ectodomain-TM1 interface (positions 50–61) resulted in minimal changes in ethanol response. On the other hand, alanine substitution at the ectodomain-TM2 interface (positions 321–337) identified two key residues (D331 and M336) that significantly reduced ethanol inhibition of ATP-gated currents without causing marked changes in ATP I max, EC50, or Hill's slope. Other amino acid substitutions at positions 331 and 336 significantly altered or eliminated the modulatory effects of ethanol. Linear regression analyses revealed a significant relationship between hydropathy and polarity, but not molecular volume/molecular weight of the residues at these two positions. The results support the proposed hypothesis and represent an important step toward developing ethanol-insensitive receptors for investigating the role of P2X4Rs in mediating behavioral effects of ethanol.  相似文献   
967.
有机相中固定化脂肪酶促有机硅烷醇的转酯   总被引:1,自引:0,他引:1  
探讨了有机相中固定化脂肪酶(Lipozyme)催化非天然的有机硅院醇与脂肪酸酯转酯反应的可能性;系统地研究了有机溶剂特性、水活度、有机硅烷醇结构、脂肪酸酯碳链长等因素对转酯反应的影响。  相似文献   
968.
969.
The methyl ester of succinic semialdehyde (SSA) was examined as a substrate for succinate semialdehyde dehydrogenase (SSADH) from rat brain. It was found that the ester can be oxidized by the enzyme. Values of Km for SSA-Me were higher than for those for SSA, and for this substrate the enzyme showed a substrate-dependent inhibition. This finding suggests that the carboxylate group of SSA is not essential in the process of inhibition of SSADH by the substrate. Cyclopropyl analogues of SSA, cis- and trans-1-formyl-cyclopropan-2-carboxylic acids, were also individually tested as substrates of SSADH. Only the trans isomer was found to be oxidized to the corresponding dicarboxylic acid; it inhibited the enzyme in the same range of concentrations as SSA. The above data suggest that, as for gamma-aminobutyric acid, SSA is present in an unfolded, transoid conformation at the active site of SSADH.  相似文献   
970.
介绍了一种利用过夜培养的菌液瞬时提取质粒DNA,并用于电泳鉴别含有插入子克隆的方法。事先无需准备许多繁琐的相关试剂,提取质粒的全过程只需3~5min就可完成,非常适合于做重组克隆的快速鉴别。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号