首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7779篇
  免费   253篇
  国内免费   273篇
  8305篇
  2023年   75篇
  2022年   82篇
  2021年   82篇
  2020年   108篇
  2019年   151篇
  2018年   189篇
  2017年   102篇
  2016年   124篇
  2015年   124篇
  2014年   382篇
  2013年   615篇
  2012年   266篇
  2011年   360篇
  2010年   253篇
  2009年   331篇
  2008年   353篇
  2007年   370篇
  2006年   315篇
  2005年   331篇
  2004年   286篇
  2003年   267篇
  2002年   186篇
  2001年   158篇
  2000年   118篇
  1999年   173篇
  1998年   152篇
  1997年   129篇
  1996年   130篇
  1995年   134篇
  1994年   147篇
  1993年   99篇
  1992年   117篇
  1991年   104篇
  1990年   94篇
  1989年   117篇
  1988年   85篇
  1987年   101篇
  1986年   86篇
  1985年   117篇
  1984年   149篇
  1983年   94篇
  1982年   119篇
  1981年   95篇
  1980年   83篇
  1979年   77篇
  1978年   76篇
  1977年   50篇
  1976年   50篇
  1974年   26篇
  1973年   29篇
排序方式: 共有8305条查询结果,搜索用时 0 毫秒
71.
Confocal and electron microscopy images, and WB analysis of cellular fractions revealed that HP1γ is in the nucleus but also in the cytoplasm of C2C12 myoblasts, myotubes, skeletal and cardiac muscles, N2a, HeLa and HEK293T cells. Signal specificity was tested with different antibodies and by HP1γ knockdown. Leptomycin B treatment of myoblasts increased nuclear HP1γ, suggesting that its nuclear export is Crm-1-dependent. HP1γ exhibited a filamentous pattern of staining partially co-localizing with actin in the cytoplasm of myotubes and myofibrils. Immunoelectron microscopic analysis showed high-density immunogold particles that correspond to HP1γ localized to the Z-disk and A-band of the sarcomere of skeletal muscle. HP1γ partially co-localized with actin in C2C12 myotubes and murine myofibrils. Importantly, actin co-immunoprecipitated with HP1γ in the nuclear and cytosolic fractions of myoblasts. Actin co-immunoprecipitated with HP1γ in myoblasts incubated in the absence or presence of the actin depolymerizing agent cytochalasin D, suggesting that HP1γ may interact with G-and F-actin. In the cytoplasm, HP1γ was associated to the perinuclear actin cap that controls nuclear shape and position. In the nucleus, re-ChIP assays showed that HP1γ-actin associates to the promoter and transcribed regions of the house keeping gene GAPDH, suggesting that HP1γ may function as a scaffold protein for the recruitment of actin to control gene expression. When HP1γ was knocked-down, myoblasts were unable to differentiate or originated thin myotubes. In summary, HP1γ is present in the nucleus and the cytoplasm interacting with actin, a protein complex that may exert different functions depending on its subcellular localization.  相似文献   
72.
17beta-Hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17beta-HSDcl) is an NADPH-dependent member of the short-chain dehydrogenase/ reductase superfamily. To study the catalytic properties of this enzyme, we prepared several specific mutations of 17beta-HSDcl (Tyr167Phe, His164Trp/Gly, Tyr212Ala). Wild-type 17beta-HSDcl and the 17beta-HSDcl mutants were evaluated by chromatographic, kinetic and thermodynamic means. The Tyr167Phe mutation resulted in a complete loss of enzyme activity, while substitution of His164 with Trp and Gly both resulted in higher specificity number (V/K) for the steroid substrates, which are mainly a consequence of easier accessibility of steroid substrates to the active-site hollow under optimized conditions. The Tyr212Ala mutant showed increased activity in the oxidative direction, which appears to be a consequence of increased NADPH dissociation. The kinetic characterizations and thermodynamic analyses also suggest that His164 and Tyr212 in 17beta-HSDcl have a role in the opening and closing of the active site of this enzyme and in the discrimination between oxidized and reduced coenzyme.  相似文献   
73.
It is well described that impairment of energy production has been implicated in the pathogenesis of a number of diseases. Although several advances have occurred over the past 20 years concerning the use and administration of electroconvulsive therapy (ECT) to minimize its side effects, little progress has been made in understanding its mechanism of action. In this work, our aim was to measure the activities of mitochondrial respiratory chain complexes II and IV and succinate dehydrogenase from rat brain after acute and chronic electroconvulsive shock (ECS). Our results showed that mitochondrial respiratory chain enzymes activities were increased after acute ECS in hippocampus, striatum and cortex of rats. Besides, we also demonstrated that complex II activity was increased after chronic ECS in cortex, while hippocampus and striatum were not affected. Succinate dehydrogenase, however, was inhibited after chronic ECS in striatum, activated in cortex and not affected in hippocampus. Finally, complex IV was not affected by chronic ECS in hippocampus, striatum and cortex. Our findings demonstrated that brain metabolism is altered by ECS.  相似文献   
74.
Stromal-vascular cells from rats and pigs were isolated from adipose tissue and used to measure preadipocyte proliferation and differentiation. Cells from rats and pigs were grown in either 2.5% pig serum or 2.5% rat serum. Cells were either supplemented or unsupplemented with insulin after five days of growth in culture. In these cultures, pig fat cells developed as discrete clusters while rat fat cells developed as loose clusters or as individual cells. Rat cells had greater levels of sn-glycerol phosphate dehydrogenase activity compared to pig cells. Rat serum increased soluble protein in plated cells when compared to cells grown in pig serum. Pig serum increased glycerol phosphate dehydrogenase specific activity when compared to rat serum. In this system, there was no response to insulin. The cells grown in rat serum did not resemble adipocytes in regard to the presence of large lipid droplets (oil red 0 staining). These results demonstrate that rat and pig stromal-vascular cells in culture are morphologically different. Cells from both species, however, responded similarly to sera from either species showing that cells from rats and pigs responded to the growth and differentiation factors present in these sera.Mention of a trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   
75.
As an important organic compound, chiral alcohols are the key chiral building blocks to many single enantiomer pharmaceuticals. Asymmetric reduction of the corresponding prochiral ketones to produce the chiral alcohols by biocatalysis is one of the most promising routes. Asymmetric reduction of different kinds of non-natural prochiral ketones catalyzed by various plants tissue was studied in this work. Acetophenone, 4'-chloroacetophenone and ethyl 4-chloroacetoacetate were chosen as the model substrates for simple ketone, halogen-containing aromatic ketone and beta-ketoesters, respectively. Apple (Malus pumila), carrot (Daucus carota), cucumber (Cucumis sativus), onion (Allium cepa), potato (Soanum tuberosum), radish (Raphanus sativus) and sweet potato (Ipomoea batatas) were chosen as the biocatalysts. It was found that these kinds of prochiral ketoness could be reduced by these plants tissue with high enantioselectivity. Both R- and S-form configuration chiral alcohols could be obtained. The e.e. and chemical yield could reach about 98 and 80% respectively for acetophenone and 4'-chloroacetophenone reduction reaction with favorable plant tissue. And the e.e. and yield for ethyl 4-chloroacetoacetate reduction reaction was about 91 and 45% respectively.  相似文献   
76.
Biochemical analysis of enantioselective short-chain alcohol dehydrogenase from the hyperthermophilic archaeon Thermococcus sibiricus (TsAdh319) revealed unique polyextremophilic properties of the enzyme – half-life of 1 h at 100 °C, tolerance to high salt (up to 4 M) and organic solvents (50% v/v) concentrations. To elucidate the molecular basis of TsAdh319 polyextremophilicity, we determined the crystal structure of the enzyme in a binary complex with 5-hydroxy-NADP at 1.68 Å resolution. TsAdh319 has a tetrameric structure both in the crystals and in solution with an intersubunit disulfide bond. The substrate-binding pocket is hydrophobic, spacious and open that is consistent with the observed promiscuity in substrate specificity of TsAdh319. The present study revealed an extraordinary number of charged residues on the surface of TsAdh319, 70% of which were involved in ion pair interactions. Further we compared the structure of TsAdh319 with the structures of other homologous short-chain dehydrogenases/reductases (SDRs) from thermophilic and mesophilic organisms. We found that TsAdh319 has the highest arginine and aspartate + glutamate contents compared to the counterparts. The frequency of occurrence of salt bridges on the surface of TsAdh319 is the highest among the SDRs under consideration. No differences in the proline, tryptophan, and phenylalanine contents are observed; the compactness of the protein core of TsAdh319, the monomer and tetramer organization do not differ from that of the counterparts. We suggest that the unique thermostability of TsAdh319 is associated with the rigidity and simultaneous “resilience” of the structure provided by a compact hydrophobic core and a large number of surface ion pairs. An extensive salt bridge network also might maintain the structural integrity of TsAdh319 in high salinity.  相似文献   
77.
Human prenatal ethanol exposure that occurs during a period of increased synaptogenesis known as the 'brain growth spurt' has been associated with significant impairments in attention, learning and memory. Recent studies have shown that administration of ethanol to infant rats during the synaptogenesis period (first 2 weeks after birth) triggers extensive apoptotic neurodegeneration throughout many regions of the developing brain and results in cognitive dysfunctions as the animal matures. The present study was designed with an aim to investigate the effect of resveratrol, a polyphenolic phytoalexin (trans-3,5,4-trihydroxy stilbene) present in red wine on alcohol-induced cognitive deficits and neuronal apoptosis in rat pups postnatally exposed to ethanol. Pups were administered ethanol (5 g/kg, 12% v/v) by intragastric intubation on postnatal days 7, 8, and 9. Ethanol-exposed pups showed impaired memory performance in both Morris water maze elevated plus maze task recorded by using computer tracking with EthoVision software. Behavioral deficit in ethanol-exposed pups was associated with enhanced acetylcholinesterase activity, increased oxidative-nitrosative stress, cytokine (TNF-α, IL-1β and TGF-β), nuclear factor kappa beta and caspase 3 levels in both cerebral cortex and hippocampus. Chronic treatment with resveratrol (10 and 20 mg/kg) significantly attenuated all the behavioral, biochemical and molecular changes in different brain regions of ethanol administered pups. The major finding of the study is that resveratrol blocks activation of nuclear factor kappa beta pathway and apoptotic signaling and prevents cognitive deficits in rats postnatally exposed to ethanol.  相似文献   
78.
Summary Very high gravity wheat mashes containing 300 g or more sugares per liter were prepared by enzymatic hydrolysis of starch and fermented with a commercial preparation of active dry yeast. The active dry yeast used in this study was a blend of several strains ofSaccharomyces cerevisiae. The fermentation was carried out at 20°C at different pitching rates (inoculation levels) with and without the addition of yeast extract as nutrient supplement. At a pitching rate of 76 million cells per g of mash an ethanol yield of 20.4% (v/v) was obtained. To achieve this yeast extract must be added to the wheat mash as nutrient supplement. When the pitching rate was raised to 750 million cells per g of mash, the ethanol yield increased to 21.5% (v/v) and no nutrient supplement was required. The efficiency of conversion of sugar to ethanol was 97.6% at the highest pitching rate. This declined slightly with decreasing pitching rate. A high proportion of yeast cells lost viability at high pitching rates. It is suggested that nutrients released from yeast cells that lost viability and lysed, contributed to the high yield of ethanol in the absence of any added nutrients.  相似文献   
79.
Adverse effects of glucocorticoids could be limited by developing new compounds that selectively modulate anti-inflammatory activity of the glucocorticoid receptor (GR). We have synthesized a novel series of steroidal GR ligands, including potent agonists, partial agonists and antagonists with a wide range of effects on inhibiting secretion of interleukin-6. Some of these new ligands were designed to directly impact conformational stability of helix-12, in the GR ligand-binding domain (LBD). These compounds modulated GR activity and glucocorticoid-induced gene expression in a manner that was inversely correlated to the degree of inflammatory response. In contrast, compounds designed to directly modulate LBD epitopes outside helix-12, led to dissociated levels of GR-mediated gene expression and inflammatory response. Therefore, these new series of compounds and their derivatives will be useful to dissect the ligand-dependent features of GR signaling specificity.  相似文献   
80.
The ligninolytic system of white rot fungi is primarily composed of lignin peroxidase, manganese peroxidase (MnP) and laccase. The present work was carried out to determine the best culture conditions for production of MnP and its activity in the relatively little-explored cultures of Dichomitus squalens, Irpex flavus and Polyporus sanguineus, as compared with conditions for Phanerochaete chrysosporium and Coriolus versicolor. Studies on enzyme production under different nutritional conditions revealed veratryl alcohol, guaiacol, Reax 80 and Polyfon H to be excellent MnP inducers. Electronic Publication  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号