首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8391篇
  免费   809篇
  国内免费   922篇
  2023年   114篇
  2022年   128篇
  2021年   223篇
  2020年   218篇
  2019年   343篇
  2018年   303篇
  2017年   281篇
  2016年   260篇
  2015年   257篇
  2014年   456篇
  2013年   499篇
  2012年   368篇
  2011年   491篇
  2010年   379篇
  2009年   431篇
  2008年   414篇
  2007年   458篇
  2006年   417篇
  2005年   353篇
  2004年   273篇
  2003年   297篇
  2002年   252篇
  2001年   193篇
  2000年   162篇
  1999年   185篇
  1998年   141篇
  1997年   152篇
  1996年   117篇
  1995年   103篇
  1994年   101篇
  1993年   127篇
  1992年   97篇
  1991年   73篇
  1990年   66篇
  1989年   53篇
  1988年   62篇
  1987年   46篇
  1986年   64篇
  1985年   105篇
  1984年   175篇
  1983年   107篇
  1982年   128篇
  1981年   102篇
  1980年   107篇
  1979年   110篇
  1978年   67篇
  1977年   60篇
  1976年   55篇
  1975年   58篇
  1974年   37篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
41.
Laboratory incubation and field experiments were conducted to evaluate thiourea, ATC (4-amino-1, 2, 4 triazole hydrochloride) and N-Serve 24 E (2-chloro-6-trichloromethyl-pyridine) as inhibitors of nitrification of fertilizer N. In the incubation experiment, most of the added aqueous NH3 or urea was nitrified at 14 days on both soils, but addition of the inhibitors to fertilizer N decreased the conversion of NH4−N to NO3−N markedly. There was less nitrification for ATC and thiourea but not for N-Serve 24 E when the fertilizers and the inhibitors were placed at a point as opposed to when mixed into soil. After 28 days, ATC and N-Serve 24 E were more effective in inhibiting nitrification than thiourea. ATC and N-Serve 24 E also inhibited release of mineral N (NH4−N+NO3−N) from native soil N. In the uncropped field experiment, which received N fertilizers in the fall, nitrification of fall-applied N placed in the 15-cm bands was almost complete by early May in the Malmo soil, but not in the Breton soil. When ATC or thiourea had been applied with urea, nitrification of fall-applied N was depressed by May and the recovery of applied N as NH4−N was greater with increasing band spacing to 60 cm or placing N fertilizer in nests (a method of application where urea prills were placed at a point in the soil in the center of 60×60 cm area). In late June, the percentage recovery of fall-applied N in soil as NH4−N or mineral N increased with wide band spacing, or nest placement, or by adding ATC to fertilizer N on both soils. These results indicate that placing ammonium-based N fertilizers in widely-spaced bands or in nests with low rates of inhibitors slows nitrification enough to prevent much of the losses from fall-applied N. Scientific Paper No. 552, Lacombe Research Station, Research Branch, Agric, Can.  相似文献   
42.
The15N abundance of plants usually closely reflects the15N abundance of their major immediate N source(s); plant-available soil N in the case of non-N2-fixing plants and atmospheric N2 in the case of N2 fixing plants. The15N abundance values of these sources are usually sufficiently different from each other that a significant and systematic difference in the15N abundance between the two kinds of plants can be detected. This difference provides the basis for the natural15N abundance method of estimating the relative contribution of atmospheric N2 to N2-fixing plants growing in natural and agricultural settings. The natural15N abundance method has certain advantages over more conventional methods, particularly in natural ecosystems, since disturbance of the system is not required and the measurements may be made on samples dried in the field. This method has been tested mainly with legumes in agricultural settings. The tests have demonstrated the validity of this method of arriving at semi-quantitative estimates of biological N2-fixation in these settings. More limited tests and applications have been made for legumes in natural ecosystems. An understanding of the limits and utility of this method in these systems is beginning to emerge. Examples of systematic measurements of differences in15N abundance between non-legume N2-fixing systems and neighbouring non-fixing systems are more unusual. In principle, application of the method to estimate N2-fixation by nodulated non-legumes, using the natural15N abundance method, is as feasible as estimating N2-fixation by legumes. Most of the studies involving N2-fixing non-legumes are with this type of system (e.g., Ceanothus, Chamabatia, Eleagnus, Alnus, Myrica, and so forth). Resuls of these studies are described. Applicability for associative N2-fixation is an empirical question, the answer to which probably depends upon the degree to which fixed N goes predominantly to the plant rather than to the soil N pool. The natural15N abundance method is probably not well suited to assessing the contribution of N2-fixation by free-living microorganisms in their natural habitat, particularly soil microorganisms.This work was supported in part by subcontracts under grants from the US National Science Foundation (DEB79-21971 and BSR821618)  相似文献   
43.
Kucey  R. M. N.  Snitwongse  P.  Chaiwanakupt  P.  Wadisirisuk  P.  Siripaibool  C.  Arayangkool  T.  Boonkerd  N.  Rennie  R. J. 《Plant and Soil》1988,108(1):33-41
Controlled environment and field studies were conducted to determine relationships between various measurements of N2 fixation using soybeans and to use these measures to evaluate a number ofBradyrhizobium japonicum strains for effectiveness in N2 fixation in Thai soils.15N dilution measurements of N2 fixation showed levels of fixation ranging from 32 to 161 kg N ha−1 depending on bacterial strain, host cultivar and location. Midseason measures of N2 fixation were correlated with each other, but not related measures taken at maturity. Ranking ofB. japonicum strains based on performance under controlled conditions in N-free media were highly correlated with rankings based on soybean seed yields and N2 fixation under field conditions. This study showed that inoculation of soybeans with effectiveB. japonicum strains can result in significant increases in yield and uptake of N through fixation. The most effective strains tested for use in Thai conditions were those isolated from Thai soils; however, effective strains from other locations were also of benefit.  相似文献   
44.
Barley (Hordeum vulgare L.) and tomato Lycopersicon esculentum Mill.) were grown hydroponically and examined 2, 5, and 10 d after being deprived of nitrogen (N) supply. Leaf elongation rate declined in both species in response to N stress before there was any reduction in rate of dryweight accumulation. Changes in water transport to the shoot could not explain reduced leaf elongation in tomato because leaf water content and water potential were unaffected by N stress at the time leaf elongation began to decline. Tomato maintained its shoot water status in N-stressed plants, despite reduced water absorption per gram root, because the decline in root hydraulic conductance with N stress was matched by a decline in stomatal conductance. In barley the decline in leaf elongation coincided with a small (8%) decline in water content per unit area of young leaves; this decline occurred because root hydraulic conductance was reduced more strongly by N stress than was stomatal conductance. Nitrogen stress caused a rapid decline in tissue NO 3 - pools and in NO 3 - flux to the xylem, particularly in tomato which had smaller tissue NO 3 - reserves. Even in barley, tissue NO 3 - reserves were too small and were mobilized too slowly (60% in 2 d) to support maximal growth for more than a few hours. Organic N mobilized from old leaves provided an additional N source to support continued growth of N-stressed plants. Abscisic acid (ABA) levels increased in leaves of both species within 2 d in response to N stress. Addition of ABA to roots caused an increase in volume of xylem exudate but had no effect upon NO 3 - flux to the xylem. After leaf-elongation rate had been reduced by N stress, photosynthesis declined in both barley and tomato. This decline was associated with increased leaf ABA content, reduced stomatal conductance and a decrease in organic N content. We suggest that N stress reduces growth by several mechanisms operating on different time scales: (1) increased leaf ABA content causing reduced cell-wall extensibility and leaf elongation and (2) a more gradual decline in photosynthesis caused by ABA-induced stomatal closure and by a decrease in leaf organic N.Abbreviation and symbols ABA abscisic acid - ci leaf internal CO2 concentration - Lp root hydraulic conductance  相似文献   
45.
The fate of sheep urine-N applied to an upland grass sward at four dates representing widely differing environmental conditions, was followed in soil (0–20 cm) and in herbage. Urine was poured onto 1-m2 plots to simulate a single urination in August 1984 (warm and dry), May (cool), July and August 1985 (cool and wet) at rates equivalent to 40–52 g N m−2. The transformation of urine-N (61–69% urea-N) in soil over a 6–7 week period followed the same general pattern when applied at different times during the season; rapid hydrolysis of urea, the appearance of large amounts of urine-N as ammonium in soil extracts, and the appearance of nitrate about 14 days after application. The magnitude of “apparent” nitrification however differed markedly with environmental conditions, being greatest in May 1985 when a maximum of 76% of the inorganic soil N was in the form of nitrate. At all other application dates nitrate levels were relatively low. With the August 1984 application soil inorganic N returned to control levels (given water only) after 31 days but considerable amounts remained in soil for 60–90 days with the other applications. Weekly cuts to 3-cm indicated that increases in herbage dry matter and N yields in response to urine application were greatest in absolute terms after the May 1985 application and continued for at least 70 days with all applications. Relative to control plots the May application resulted in a 3-fold increase in herbage DM compared with corresponding values of 6-, 5-, and 7-fold increases with the August 1984, July and August 1985 applications. Recovery of urine-N in herbage was poor averaging only 17% of that applied at different dates, while recovery in soil extracts was incomplete. The exact routes of loss (volatilisation, leaching, denitrification or immobilisation) were not quantified but it is evident that substantial amounts of urine-N can be lost from the soil-plant system under upland conditions.  相似文献   
46.
Summary Natural carbon and nitrogen isotope ratios were measured in different compartments (needles and twigs of different ages and crown positions, litter, understorey vegetation, roots and soils of different horizons) on 5 plots of a healthy and on 8 plots of a declining Norway spruce (Picea abies (L.) Karst.) forest in the Fichtelgebirge (NE Bavaria, Germany), which has recently been described in detail (Oren et al. 1988a; Schulze et al. 1989). The 13C values of needles did not differ between sites or change consistently with needle age, but did decrease from the sun-to the shade-crown. This result confirms earlier conclusions from gas exchange measurements that gaseous air pollutants did no long-lasting damage in an area where such damage was expected. Twigs (13C between-25.3 and-27.8) were significantly less depleted in 13C than needles (13C between-27.3 and-29.1), and 13C in twigs increased consistently with age. The 15N values of needles ranged between-2.5 and-4.1 and varied according to stand and age. In young needles 15N decreased with needle age, but remained constant or increased in needles that were 2 or 3 years old. Needles from the healthy site were more depleted in 15N than those from the declining site. The difference between sites was greater in old needles than in young ones. This differentiation presumably reflects an earlier onset of nitrogen reallocation in needles of the declining stand. 15N values in twigs were more negative than in needles (-3.5 to-5.2) and showed age- and stand-dependent trends that were similar to the needles. 15N values of roots and soil samples increased at both stands with soil depth from-3.5 in the organic layer to +4 in the mineral soil. The 15N values of roots from the mineral soil were different from those of twigs and needles. Roots from the shallower organic layer had values similar to twigs and needles. Thus, the bulk of the assimilated nitrogen was presumably taken up by the roots from the organic layer. The problem of separation of ammonium or nitrate use by roots from different soil horizons is discussed.  相似文献   
47.
The maizerab17 gene is expressed in different plant parts in response to ABA and osmotic stress (J. Vilardellet al., Plant Mol Biol 14 (1990) 423–432). Here we demonstrate that 5 upstream sequences of therab17 gene confer the appropriate patterns of expression on the chloramphenicol acetyl transferase (CAT) reporter gene in transgenic tobacco plants, as well as in protoplasts derived from cultured rice cells. Specifically, a CAT construct containing a large 5 upstream fragment ofrab17 (–1330/+29) results in high levels of CAT activity in embryos, leaves and roots of transgenic plants subjected to water stress or ABA treatment. Transient expression assays in rice protoplasts transfected with CAT genes fused torab17 promoter deletions indicate that a 300 bp DNA fragment (–351/–102) is sufficient to confer ABA responsiveness upon the reporter gene. Furthermore, a 100 bp sequence (–219/–102) is capable of conferring ABA responsiveness upon a minimal promoter derived from the 35S CaMV promoter. Gel retardation experiments indicate that maize nuclear proteins bind to this fragment. This region of 100 bp contains a sequence (ACGTGGC) which has been identified as an abscisic acid response element in studies of other ABA-responsive plant genes.  相似文献   
48.
A system was devised for the in vitro culture of soybean fruits. The culture system consisted of a single fruit attached to a short piece of stem through which the nutrients were supplied. The fruit explants were taken when pods were fully expanded and the seeds at initial stages of growth. During a 7-day culture period, the seeds accumulated dry matter and protein in quantities comparable to those in situ. Omission of the C source (sucrose) from the medium resulted in no dry matter accumulation in the seeds, but omission of the N source (glutamine) still led to some protein accumulation, indicating mobilization of N from other parts of the fruit explant. Optimum protein accumulation occurred when glutamine was supplied at 1.2 mg N ml-1. Protein accumulation in the seeds was highly dependent on the nature of the N source. Glutamine, asparagine and the ureide, allantoin, were equally the most efficient sources, whereas several other amino acids tested showed lower degrees of efficiency. The data indicate a high metabolic capacity of the fruit tissues for principal N transport compounds of soybean, namely allantoin, asparagine and glutamine. The culture system described should prove useful for developmental and metabolic studies where the complex influence of the rest of the plant is to be avoided.Abbreviations ALN allantoin - ALC allantoic acid Preliminary report presented at the IV World Soybean Research Conference, Buenos Aires, Arggentina, March 1989.  相似文献   
49.
应用ESR和自旋捕集相结合的技术直接测定了过硫酸铵—N,N,N′,N′-四甲基乙二胺(AP-TEMED)体系产生的氧自由基,经计算机波谱模拟和计算波谱参数证实该体系产生的氧自由基是O_2~-和·OH。并用维生素C、茶多酚、超氧化物歧化酶等氧自由基清除剂,从聚丙烯酰胺凝胶法、化学发光法和脂质过氧化法不同角度研究了AP-TEMED体系在自由基研究方面的应用意义。  相似文献   
50.
Cultures of the cyanobacterium Microcystis firma show rhythmic uptake and release of ammonia under conditions of carbon limitation. The massive removal of ammonia from the medium during the first light phase has little impact on the intracellular pH: a pH shift of less than 0.2 U towards the alkaline can be measured by in vivo 31P NMR. Furthermore, the energy status of the cells remains regulated. In vivo 15N NMR of M. firma, cultivated either with labelled nitrate or ammonia as the sole nitrogen source, reveals only gradual differences in the pool of free amino acids. Additionally both cultivation types show -aminobutyric acid, acid amides and yet unassigned secondary metabolites as nitrogen storing compounds. Investigating the incorporation of nitrogen under carbon limitation, however, only the amide nitrogen of glutamine is found permanently labelled in situ. While transamination reactions are blocked, nitrate reduction to ammonia can still proceed. Cation exchange processes in the cell wall are considered regarding the ammonia disappearance in the first phase, and the control of ammonia uptake is discussed with respect to the avoidance of intracellular toxification.Abbreviations GABA -aminobutyric acid - GOGAT glutamate synthase - GS glutamine synthetase - MDP methylene diphosphonate - MOPSO 3-(N-morpholino)-2-hydroxy-propanesulfonic acid - NDPS nucieoside diphosphosugars - NOE nuclear Overhauser effect - NMR nuclear magnetic resonance For convenience, the term ammonia is used throughout to denote ammonia or ammonium ion when there is no good evidence as to which chemical species is involved  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号