首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41945篇
  免费   1506篇
  国内免费   1775篇
  2023年   373篇
  2022年   608篇
  2021年   649篇
  2020年   788篇
  2019年   951篇
  2018年   981篇
  2017年   837篇
  2016年   858篇
  2015年   827篇
  2014年   1849篇
  2013年   3223篇
  2012年   1311篇
  2011年   1952篇
  2010年   1412篇
  2009年   1902篇
  2008年   2076篇
  2007年   2067篇
  2006年   1757篇
  2005年   1677篇
  2004年   1348篇
  2003年   1311篇
  2002年   1083篇
  2001年   864篇
  2000年   773篇
  1999年   721篇
  1998年   754篇
  1997年   701篇
  1996年   688篇
  1995年   650篇
  1994年   661篇
  1993年   604篇
  1992年   565篇
  1991年   501篇
  1990年   465篇
  1989年   456篇
  1988年   407篇
  1987年   423篇
  1986年   292篇
  1985年   650篇
  1984年   932篇
  1983年   635篇
  1982年   719篇
  1981年   569篇
  1980年   500篇
  1979年   444篇
  1978年   278篇
  1977年   272篇
  1976年   223篇
  1974年   185篇
  1973年   179篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
181.
Differences in water binding were measured in the leaf cells ofMesembryanthemum crystallinum L. plants grown under high-salinity conditions by using nuclear-magnetic-resonance (NMR) imaging. The 7-Tesla proton NMR imaging system yielded a spatial resolution of 20·20·100 m3. Images recorded with different spin-echo times (4.4 ms to 18 ms) showed that the water concentrations in the bladder cells (located on the upper and lower leaf surface), in the mesophyll cells and in the water-conducting vessels were nearly identical. All of the water in the bladder cells and in the water-conducting vessels was found to be mobile, whilst part of the water in the mesophyll cells was bound. Patches of mesophyll cells could be identified which bound water more strongly than the surrounding mesophyll cells. Optical investigations of leaf cross-sections revealed two types of mesophyll cells of different sizes and chloroplast contents. It is therefore likely that in the small-sized mesophyll cells water is strongly bound. A long-term asymmetric water exchange between the mesophyll cells and the bladder cells during Crassulacean acid metabolism has been described in the literature. The high density of these mesophyll cells in the lower epidermis is a possible cause of this asymmetry.Abbreviations CAM Crassulacean acid metabolism - NMR nuclear magnetic resonance - TE spin-echo time  相似文献   
182.
When pea (Pisum sativum L.) embryos were cultured on low osmotica, with or without added abscisic acid (ABA), there was very little change in the total mRNA translation products resolved by one-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The only marked alteration was an increase in production of two low-molecular-weight proteins. The purification and partial characterisation of these two ABA-responsive seed proteins (ABR17 and ABR18) is described. Both proteins were purified to homoeneity, as judged by SDS-PAGE, from embryos cultured in the presence of ABA. Antisera were raised against both proteins. Each serum cross-reacted with the other protein, indicating that the proteins are closely related. Their apparent molecular masses (Mrs) were estimated to be 17200 (ABR17) and 18100 (ABR18) by SDS-PAGE, and 26000 by gel filtration. Both proteins were heterogeneous on isoelectric focusing. Neither protein was detected (by immunoblotting or immunoprecipitation of cell-free translation products) in embryos grown in vivo at early to mid-development stages but both were present in embryos late in development. These proteins appear to be produced late in seed development but are capable of being induced early in development by culturing embryos in vitro and are markedly enhanced by ABA.  相似文献   
183.
When young wheat (Triticum aestivum L.) or barley (Hordeum vulgare L.) plants were deprived of an external sulphate supply (-S plants), the capacity of their roots to absorb sulphate, but not phosphate or potassium, increased rapidly (derepression) so that after 3–5 d it was more than tenfold that of sulphate-sufficient plants (+S plants). This increased capacity was lost rapidly (repression) over a 24-h period when the sulphate supply was restored. There was little effect on the uptake of L-methionine during de-repression of the sulphate-transport system, but S input from methionine during a 24-h pretreatment repressed sulphate influx in both+S and-S plants.Sulphate influx of both+S and-S plants was inhibited by pretreating roots for 1 h with 4,4-diisothiocyanatostilbene-2,2-disulphonic acid (DIDS) at concentrations > 0.1 mol · m-3. This inhibition was substantially reversed by washing for 1 h in DIDS-free medium before measuring influx. Longer-term pretreatment of roots with 0.1 mol·m-3 DIDS delayed de-repression of the sulphatetransport system in-S plants but had no influence on+S plants in 3 d.The sulphydryl-binding reagent, n-ethylmaleimide, was a very potent inhibitor of sulphate influx in-S roots, but was much less inhibitory in +S roots. Its effects were essentially irreversible and were proportionately the same at all sulphate concentrations within the range of operation of the high-affinity sulphate-transport system. Inhibition of influx was 85–96% by 300 s pretreatment by 0.3 mol·m-3 n-ethylmaleimide. No protection of the transport system could be observed by including up to 50 mol·m-3 sulphate in the n-ethylmaleimide pre-treatment solution. A similar differential sensitivity of-S and+S plants was seen with p-chloromercuriphenyl sulphonic acid.The arginyl-binding reagent, phenylglyoxal, supplied to roots at 0.25 or 1 mol·m-3 strongly inhibited influx in-S wheat plants (by up to 95%) but reduced influx by only one-half in+S plants. The inhibition of sulphate influx in-S plants was much greater than that of phosphate influx and could not be prevented by relatively high (100 mol·m-3 sulphate concentrations accompanying phenylglyoxal treatment. Effects of phenylglyoxal pretreatment were unchanged for at least 30 min after its removal from the solution but thereafter the capacity for sulphate influx was restored. The amount of new carrier appearing in-S roots was far greater than in+S roots over a 24-h period.The results indicate that, in the de-repressed state, the sulphate transporter is more sensitive to reagents binding sulphydryl and arginyl residues. This suggests a number of strategies for identifying the proteins involved in sulphate transport.Abbreviations DIDS 4,4-diisothiocyanatostilbene-2,2-disulphonic acid - NEM n-ethylmaleimide - PCMBS p-chloromercuriphenyl sulphonic acid  相似文献   
184.
We report the partial amino acid sequence of chicken intestinal microvillar 110-kDa protein that, as a complex with calmodulin, has previously been shown to exhibit myosin-like ATPase and actin-binding activities. The sequence shows a high degree of similarity to the sequence of a novel vertebrate myosin I-like heavy chain encoded by a cDNA isolated from bovine intestine. This confirms that the bovine and chicken proteins are the first examples of Acanthamoeba myosin I-like proteins from higher eukaryotes. Comparison of available structural and functional data leads us to postulate that the myosin I family of proteins result from the fusion of a conserved myosin headlike motor domain, with variable COOH-terminal domains responsible for binding to specific intracellular structures.  相似文献   
185.
Summary The precise role of eicosanoids in the development of myocardial injury during ischemia and reperfusion is still a matter of debate. Enhanced local production of these bioactive compounds appears to be a common response to tissue injury. Most likely, the cardiac tissue has the capacity to generate prostaglandins, thromboxanes as well as leukotrienes. Prostacyclin (PGI,) is the major eicosanoid produced by the jeopardized myocardium. In addition, at sites of tissue injury activation of platelets and infiltrating leukocytes results in the formation of considerable amounts of thromboxanes and leukotrienes. The production of eicosanoids requires prior release of arachidonic acid (AA) from phospholipids. Both ischemia and reperfusion are associated with a rise in the tissue level of AA. The absence of a proportional relationship between the tissue level of AA and the amounts of PGI, produced suggests that the sites of AA accumulation and PGI2 formation are different. It is conceivable that AA accumulation is mainly confined to myocytes, whereas the capacity to synthesize PGI, mainly resides in vascular cells. Both beneficial and detrimental effects of eicosanoids on cardiac tissue have been described. Prostaglandins act as vasodilators. Besides, some of the prostaglandins, especially PGI,, are thought to possess cyto-protective properties. Thromboxanes and leukotrienes may impede blood supply by increasing smooth muscle tone. Besides, leukotrienes augment vascular permeability. Experimental studies, designed to evaluate the effect of pharmacological agents, like PGI2-analogues and lipoxygenase and cyclo-oxygenase inhibitors, indicat that eicosanoids influence the outcome of myocardial injury. However, the delineation of the physiological significance of the locally produced eicosanoids is complicated by such factors as the wide variety of AA derivatives produced and the dose-dependency of their effects.  相似文献   
186.
Rubredoxin was purified from Desulfovibrio vulgaris Miyazaki. It was sequenced and some of its properties determined. Rubredoxin is composed of 52 amino acids. It is highly homologous to that from D. vulgaris Hildenborough. Its N-methionyl residue is partially formalated. The millimolar absorption coefficients of the rubredoxin at 489 nm and 280 are 8.1 and 18.5, respectively, and the standard redox potential is +5 mB, which is slightly higher than those of other rubredoxins. Rubredoxin, as well as cytochrome c-553, was reduced with lactate by the action of lactate dehydrogenase of this organism, and the rection was stimulated with 2-methyl-1, 4-naphthoquinone. It is suggested that rubredoxin, in collaboration with membraous quinone, functions as natural electron carrier for cytoplasmic lactate dehydrogenase of this organism, whereas cytochrome c-553 plays the same role for periplasmic lactate dehydrogenase.  相似文献   
187.
Abstract Water storage and nocturnal increases in osmotic pressure affect the water relations of the desert succulent Ferocactus acanthodes, which was studied using an electrical circuit analog based on the anatomy and morphology of a representative individual. Transpiration rates and osmotic pressures over a 24-h period were used as input variables. The model predicted water potential, turgor pressure and water flow for various tissues. Plant capacitances, storage resistances and nocturnal increases in osmotic pressure were varied to determine their role in the water relations of this dicotyledonous succulent. Water coming from storage tissues contributed about one-third of the water transpired at night: the majority of this water came from the nonphotosynthetic, water storage parenchyma of the stem. Time lags of 4 h were predicted between maximum transpiration and maximum water uptake from the soil. Varying the capacitance of the plant caused proportional changes in osmotically driven water movement but changes in storage resistance had only minor effects. Turgor pressure in the chlorenchyma depended on osmotic pressure, but was fairly insensitive to doubling or halving of the capacitance or storage resistance of the plant. Water uptake from the soil was only slightly affected by osmotic pressure changes in the chlorenchyma. For this stem succulent, the movement of water from the chlorenchyma to the xylem and the internal redistribution of water among stem tissues were dominated by nocturnal changes in chlorenchyma osmotic pressure, not by transpiration.  相似文献   
188.
A tetrapetide containing an Aib residue, Boc-Asn-Aib-Thr-Aib-OMe, was synthesized as a peptide model for the N-glycosylation site in N-glycoproteins. Backbone conformation of the peptide and possible intramolecular interaction between the Asn and Thr side chains were elucidated by means of n.m.r. spectroscopy. Temperature dependence of NH proton chemical shift and NOE experiments showed that Boc-Asn-Aib-Thr-Aib-OMe has a tendency to form a β-turn structure with a hydrogen bond involving Thr and Aib4 NH groups. Incorporation of Aib residues in the peptide model promotes folding of the peptide backbone. With folded backbone conformation, carboxyamide protons of the Asn residue are not involved in hydrogen bond network, while the OH group of the Thr residue is a candidate for a hydrogen bond in DMSO-d6 solution.  相似文献   
189.
Abstract. Previous reports indicate that heterophyllous aquatic plants can be induced to form aerial-type leaves on submerged shoots when they are grown in exogenous abscisic acid (ABA). This study reports on the relationship between osmotic stress (e.g. the situation encountered by a shoot tip when it grows above the water surface), endogenous ABA (as measured by gas chromatography-electron capture detector) and leaf morphology in the heterophyllous aquatic plant, Hippuris vulgaris. Free ABA could not be detected in submerged shoots of H. vulgaris but in aerial shoots ABA occurred at ca. 40ng (g fr wt)−1. When submerged shoots were osmotically stressed ABA appeared at levels of 26 to 40ng (g fr wt)−1. These and other data support two main conclusions: (1) Osmotically stressing a submerged shoot causes the appearance of delectable levels of ABA. (2) The rise of ABA in osmotically stressed submerged shoots in turn induces a change in leaf morphology from the submerged to the aerial form. This corroborates the hypothesis that, in the natural environment, ABA levels rise in response to the osmotic stress encountered when a submerged shoot grows up through the water/air interface and that the increased ABA leads to the production of aerial-type leaves.  相似文献   
190.
Abstract. White lupin ( Lupinus albus L.) was grown for 13 weeks in a phosphorus (P) deficient calcareous soil (20% CaCO3, pH(H2O)7.5) which had been sterilized prior to planting and fertilized with nitrate as source of nitrogen. In response to P deficiency, proteoid roots developed which accounted for about 50% of the root dry weight. In the rhizosphere soil of the proteoid root zones, the pH dropped to 4.8 and abundant white precipitates became visible. X-ray spectroscopy and chemical analysis showed that these precipitates consisted of calcium citrate. The amount of citrate released as root exudate by 13-week-old plants was about 1 g plant−1, representing about 23% of the total plant dry weight at harvest. In the rhizosphere soil of the proteoid root zones the concentrations of available P decreased and of available Fe, Mn and Zn increased. The strong acidification of the rhizosphere and the cation/anion uptake ratio of the plants strongly suggests that proteoid roots of white lupin excrete citric acid, rather than citrate, into the rhizosphere leading to intensive chemical extraction of a limited soil volume. In a calcareous soil, citric acid excretion leads to dissolution of CaCO3 and precipitation of calcium citrate in the zone of proteoid roots.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号