首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7726篇
  免费   762篇
  国内免费   922篇
  2023年   88篇
  2022年   96篇
  2021年   170篇
  2020年   198篇
  2019年   283篇
  2018年   270篇
  2017年   279篇
  2016年   228篇
  2015年   255篇
  2014年   375篇
  2013年   410篇
  2012年   325篇
  2011年   398篇
  2010年   319篇
  2009年   388篇
  2008年   409篇
  2007年   446篇
  2006年   378篇
  2005年   330篇
  2004年   268篇
  2003年   283篇
  2002年   240篇
  2001年   174篇
  2000年   166篇
  1999年   189篇
  1998年   148篇
  1997年   166篇
  1996年   126篇
  1995年   116篇
  1994年   114篇
  1993年   144篇
  1992年   108篇
  1991年   92篇
  1990年   81篇
  1989年   83篇
  1988年   77篇
  1987年   59篇
  1986年   78篇
  1985年   125篇
  1984年   175篇
  1983年   110篇
  1982年   139篇
  1981年   89篇
  1980年   98篇
  1979年   93篇
  1978年   51篇
  1977年   38篇
  1976年   44篇
  1975年   35篇
  1974年   25篇
排序方式: 共有9410条查询结果,搜索用时 46 毫秒
31.
32.
33.
Summary Measurements of litter fall and litter removal by crabs, in conjunction with estimates of litter decay by microbes and tidal export of litter from three high-intertidal mangrove forests were made during a year-long study in tropical northeastern Australia. In forests dominated by Ceriops tagal and Bruguiera exaristata, litter standing stocks remained low on the forest floor (mean 6 g·m-2), although litter fall was high; 822 and 1022 g·m-2·y-1, respectively. Sesarmid crabs removed 580 (Ceriops) and 803 (Bruguiera) g·m-2·y-1, or 71 and 79%, of the total annual litter fall from the forest floor. Relative to the rate of litter removal by crabs, microbial turnover of whole, unshredded litter was insignificant, accounting for <1% of annual litter fall. Export of litter by tides was estimated to remove 194 (Ceriops) and 252 (Bruguiera) g·m-2·y-1 or 24 and 25% of annual litter fall. In a forest dominated by Avicenniamarina, in which an ocypodid crab was more abundant than sesarmids, litter standing stocks were higher (mean 84 g·m-2) and crabs removed less litter; 173 g·m-2·y-1 or 33% of the annual litter fall of 519 g·m-2·y-1. Microbial turnover of intact litter was more important in the Avicennia forest (168 g·m-2·y-1 or 32% of annual litter fall), and tides exported 107 g·m-2·y-1 or 21% of litter production. In areas where sesarmid crabs were absent or rare in Ceriops forests, there were significantly higher standing stocks of litter and slower rates of leaf removal. Taking into account the probable assimilation efficiencies of sesarmid crabs feeding on mangrove leaves, we estimate that in Ceriops and Bruguiera forests leaf processing by crabs turns litter over at >75 times the rate of microbial decay alone, thus facilitating the high sediment bacterial productivity in these forests. The importance of litter processing by crabs increases with height in the intertidal in tropical Australia, in contrast to New World mangrove forests, where the reverse is true.Contribution No. 445 from the Australian Institute of Marine Science  相似文献   
34.
Lea Madi  Y. Henis 《Plant and Soil》1989,115(1):89-98
Aggregation of the root-inhabiting, asymbiotic N-fixingAzospirillum brasilense Cd (ATCC-29729), was studied. Aggregation occurred towards the end of the exponential phase and during the stationary phase. More aggregates were formed in media supplemented with organic acids than in those containing sugars as a sole carbon source. Maximum growth with no aggregation was obtained in a medium containing both fructose and malate as carbon sources. Aggregation was increased by poly-L-lysine and carbodiimide as well as by increasing the C/N ratio and decreasing combined nitrogen in the growth medium. Aggregates were stable at pH levels of >8 and <6, but dispersed at pH 7.1. Treatment of Azospirillum with NaEDTA resulted in loss of both aggregative capacity and the ability of adsorb to wheat roots without losing cell viability. When extracted bacteria were suspended in their dialysed NaEDTA extract, both their aggregative and adsorptive capacities were restored.The dialysed NaEDTA extract agglutinated bacterial cells and red blood cells, especially of type O. When the extract was run through a sepharose gel, it separated into three main fractions, of which only one showed agglutinating capacity. Gel electrophoresis of this fraction revealed a single band (MW 97,000) which reacted positively to Schiff's reagent and Coomassie brilliant blue R-250, typical to a glycoprotein. Bacterial agglutination by this fraction was strongly inhibited by D-glucose, melibiose and -metyl glucoside. No evidence as to the involvement of cellulose fibrils in aggregation was found. It is suggested that glycoprotein(s) and glucose residues located on the outer surface of the cells are involved in aggregation of Azospirillum.  相似文献   
35.
Minesoils developed from lignite surface mining in Texas are nutrient-poor and have a high N retention capacity. A major concern of landowners and soil conservationists is the response of Coastal bermudagrass to the application of low rates of ammonium-N fertilizer on these nutrient-poor minesoils. A glasshouse study, using15N-labelled ammonium sulfate fertilizer and lignite minesoil, was conducted to measure Coastal bermudagrass biomass production and fertilizer recovery during establishment in response to clipping at 2, 4, and 8 week intervals. At N rates of 0, 40, and 80 kg N ha–1,increases in N fertilization increased Coastal bermudagrass aboveground biomass 5-fold, but showed only small increases in belowground biomass. Recovery of ammonium-N fertilizer ranged from 54 to 63%. Roots contained approximately the same N content across all fertilizer rates suggesting that young, estabilishing, Coatal bermudagrass roots reserve N until their N requirement is met. As more N is obtained above that which was needed to maintain roots, then additional N taken up by the plant was transported to aboveground plant parts for growth. Frequent clipping intensified N transport to aboveground tissues. Reduced amounts of N were contained in roots after clipping due to reductions in root growth, biomass, and resource demand. Fertilization of Coastal bermudagrass at low N rates with different N fertilizer forms influenced the distribution of N in the plant and affected N recovery by different parts of the plant.  相似文献   
36.
Diurnal variation in ion content of the solution bathing roots of two plants growing together in sand culture was analysed for three pairs of grass-legume species (Lolium multiflorum andTrifolium pratense; Zea mays andGlycine hispida; Avena sativa andVicia sativa) and their monospecific controls. Biomass and nitrogen content of plants were determined. Ion concentration (NO 3 , NO 2 , NH 4 + , and K+) and pH of root solutions were measured for Lolium-Trifolium plant pairs and controls at 6 hours intervals over 36 h, starting at 8 am within a circadian cycle. Root solutions were regularly depleted in NO 3 by the grasses (Lolium-Lolium control) throughout the cycle. For associations involving the legume (Lolium-Trifolium and Trifolium-Trifolium), NO 3 depletion was followed by NO 3 enrichment at night, from late afternoon to early morning; the enrichment was more marked for the Lolium-Trifolium association. Solutions which did not contain NO 2 ions, were enriched by trace amounts of NH 4 + ions, largely depleted in K+ and alkalanized for all associations throughout the cycle. Repeating the experiment with the three pairs of species at the vegetative phase of development confirmed the previous results: NO 3 enrichment during the night for associations with legumes. When the experiment was repeated with older plants which had almost completed their flowering stage, depletion only was observed and no NO 3 enrichment. These data suggest that NO 3 enrichment results from N excretion from active nodulated roots of the legume, accounting for the increase in both biomass and nitrogen content of the companion grass in grass-legume association. The quantitative importance and periodicity of nitrogen excretion as well as the origin of nitrate enrichment are discussed.  相似文献   
37.
Evidence is presented that although many proteins from the fronds of Lemna minor L. undergo enhanced degradation during osmotic stress, ribulose-1,5-bisphosphate carboxylase (RuBPCase) is not degraded. Instead RuBPCase is converted in a series of steps to a very high-molecular-weight form. The first step involves the induction of an oxidase system which after 24 h of stress converts RuBPCase to an acidic and catalytically inactive form. Subsequently, the oxidised RuBPCase protein is gradually polymerized to a number of very large aggregates (molecular weight of several million).The conversion of RuBPCase to a high-molecular-weight form appears to be correlated with (i) a reduction in the number of-SH residues and (ii) the susceptibility to in-vitro proteolysis. Indeed, the number of-SH groups per RuBPCase molecule decreases from 89 in the native enzyme to 54 and 22 in the oxidised and polymerized forms, respectively. On the other hand, the oxidised enzyme is more susceptible to in-vitro proteolysis than the native form. However, it is the polymerized form of RuBPCase which is particularly susceptible to in-vitro proteolysis.Western-blotting experiments and anti-ubiquitin antibodies were used to detect the presence of ubiquitin conjugates in extracts from osmotically stressed Lemna fronds. The possible involvement of ubiquitin in the formation of the aggregates is discussed.Abbreviations DTT dithiothreitol - EDTA ethylenediamine-tetraacetic acid - FPLC fast protein liquid chromatography - kDa kilodaltons - PAGE polyacrylamide gel electrophoresis - PMSF phenylmethylsulphonyl fluoride - RuBPCase ribulose bisphosphate carboxylase - SDS sodium dodecyl sulphate - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   
38.
Nitrate reduction in roots and shoots and exchange of reduced N between organs were quantitatively estimated in intact 13-d-old seedlings of two-row barley (Hordeum vulgare L. cv. Daisengold) using the 15N-incorporation model (A. Gojon et al. (1986) Plant Physiol. 82, 254–260), except that NH + 4 was replaced by NO - 2 . N-depleted seedlings were exposed to media containing both nitrate (1.8 mM) and nitrite (0.2 mM) under a light-dark cycle of 12:12 h at 20°C; the media contained different amounts of 15N labeling. Experiments were started either immediately after the beginning (expt. 1) or immediately prior to the end (expt. 2) of the light period, and plants were sampled subsequently at each light-dark transition throughout 36 h. The plants effectively utilized 15NO - 3 and accumulated it as reduced 15N, predominantly in the shoots. Accumulation of reduced 15N in both experiments was nearly the same at the end of the experiment but the accumulation pattern in roots and shoots during each 12-h period differed greatly depending on time and the light conditions. In expt. 1, the roots accounted for 31% (light), 58% (dark), and 9% (light) of nitrate reduction by the whole plants, while in expt. 2 the contributions of the root were 82% (dark), 20% (light), and 29% (dark), during each of the three 12-h periods. Xylem transport of nitrate drastically decreased in the dark, but that of reduced N rather increased. The downward translocation of reduced 15N increased while nitrate reduction in the root decreased, whereas upward translocation decreased while nitrate reduction in the shoot increased. We conclude that the cycling of reduced N through the plant is important for N feeding of each organ, and that the transport system of reduced N by way of xylem and phloem, as well as nitrate reduction by root and shoot, can be modulated in response to the relative magnitude of reduced-N demands by the root and shoot, with the one or the other predominating under different circumstances.Symbols Anl accumulation of reduced 15N from 15NO - 3 in 14NO - 3 -fed roots of divided root system - Ar accumulation in root of reduced 15N from 15NO - 3 - As accumulation in shoot of reduced 15N from 15NO - 3 - Rr 15NO - 3 reduction in root - Rs 15NO - 3 reduction in shoot - Tp translocation to root of shoot-reduced 15N from 15NO - 3 in phloem - Tx translocation to shoot of root-reduced 15N from 15NO - 3 in xylem  相似文献   
39.
Phorbol esters are known to alter microfilaments but it is not clear if the changes correspond to modulation of the phosphoinositide turnover/protein kinase C system. The novel technique of laser scanning confocal epifluorescence was used to study fiber orientation in phorbol ester treated cells. We treated endothelial cells with control agents and agents known to stimulate protein kinase C: 4 alpha-phorbol, phorbol 12-myristate 13-acetate (PMA), phorbol dibutyrate (PDB), or lipopolysaccharide. After incubation with the test agents, the endothelial cell microfilaments were stained with rhodamine pholloidin and viewed by conventional epifluorescence and by laser scanning confocal epifluorescence microscopy. The images obtained by the confocal microscopy corresponded to a thin optical section through the cells, 300 nm or more in thickness. The microfilaments extended predominantly in the plane of focus. After exposure of the cells to phorbol esters, the stress fibers became more nearly parallel in arrangement or were shortened, but remained in the plane of focus. The modification of microfilaments in response to phorbol esters was quantitated by a single blind analysis. In order to compare the morphological changes with a biochemical action of the phorbol esters, we measured phosphoinositide turnover. The dose-dependence of morphological changes was compared and contrasted to the dose-dependent effect of phorbol esters on bradykinin-stimulated phosphoinositide turnover. PMA had about the same EC50 (1-5 nM) for both biochemical and morphological processes. PDB was less potent in inducing the disruption of microfilament structure than in inhibiting phosphoinositide turnover. Lipopolysaccharide was ineffective in inducing a morphological change under these conditions. A simple activation of protein kinase C is insufficient to explain the dose-dependent effects of phorbol esters. Thus a morphometric analysis can help distinguish the potency of cytoskeleton modulators.  相似文献   
40.
亚洲东南部特有的新悬藓属的研究   总被引:3,自引:1,他引:2  
新悬藓属现知共4种,属于蔓藓科,为亚洲东南部特有,我国是该属植物分布的中心。本文提出拟猫尾藓仍归为船叶藓科更合适。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号