首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6404篇
  免费   620篇
  国内免费   875篇
  2023年   71篇
  2022年   83篇
  2021年   137篇
  2020年   147篇
  2019年   228篇
  2018年   226篇
  2017年   223篇
  2016年   184篇
  2015年   197篇
  2014年   320篇
  2013年   352篇
  2012年   282篇
  2011年   361篇
  2010年   270篇
  2009年   334篇
  2008年   350篇
  2007年   380篇
  2006年   329篇
  2005年   279篇
  2004年   218篇
  2003年   243篇
  2002年   207篇
  2001年   153篇
  2000年   139篇
  1999年   159篇
  1998年   124篇
  1997年   139篇
  1996年   105篇
  1995年   90篇
  1994年   95篇
  1993年   120篇
  1992年   91篇
  1991年   71篇
  1990年   60篇
  1989年   53篇
  1988年   63篇
  1987年   43篇
  1986年   61篇
  1985年   99篇
  1984年   153篇
  1983年   93篇
  1982年   112篇
  1981年   81篇
  1980年   85篇
  1979年   84篇
  1978年   45篇
  1977年   35篇
  1976年   38篇
  1975年   35篇
  1974年   25篇
排序方式: 共有7899条查询结果,搜索用时 15 毫秒
91.
利用标记基因选配褐壳蛋鸡配套杂交亲本   总被引:5,自引:0,他引:5  
应用本实验室研制的抗鸡红细胞抗原单价血清(4个位点, 14个等位基因)和DNA指纹技术,对我们组配成功的一个褐壳蛋鸡配套系统的5个亲本进行了群体遗传学分析。结果表明,由标记基因测定所提供的亲本品系遗传差异的大小, 与这些品系实际杂交效果的优劣相一致,证实了标记辅助选种方法有的效性。  相似文献   
92.
The current study investigated the short-term physiological implications of plant nitrogen uptake of urea amended with the urease inhibitor N-(n-butyl) thiophosphoric triamide (nBTPT) under both greenhouse and field conditions. 15N labelled urea amended with 0.0, 0.01, 0.1 and 0.5% nBTPT (w/w) was surface applied at a rate equivalent to 100 kg N ha–1 to perennial ryegrass in a greenhouse pot experiment. Root, shoot and soil fractions were destructively harvested 0.75, 1.75, 4, 7 and 10 days after fertilizer application. Urease activity was determined in each fraction together with 15N recovery and a range of chemical analyses. The effect of nBTPT amended urea on leaf tip scorch was evaluated together with the effect of the inhibitor applied on its own on plant urease activity.nBTPT-amended urea dramatically reduced shoot urease activity for the first few days after application compared to unamended urea. The higher the nBTPT concentration the longer the time required for shoot activity to return to that in the unamended treatment. At the highest inhibitor concentration of 0.5% shoot urease activity had returned to that of unamended urea by 10 days. Root urease activity was unaffected by nBTPT in the presence of urea but was affected by nBTPT in the absence of urea.Transient leaf tip scorch was observed approximately 7–15 days after nBTPT + urea application and was greatest with high concentrations of nBTPT and high urea-N application rates. New developing leaves showed no visual sign of tip necrosis.Urea hydrolysis of unamended urea was rapid with only 1.3% urea-N remaining in the soil after 1.75 days. N uptake and metabolism by ryegrass was rapid with 15N recovery from unamended urea, in the plant (shoot + root) being 33% after 1.75 days. Most of the 15N in the soil following the urea+0.5% nBTPT application was still as urea after 1.75 days, yet 15N plant recovery at this time was 25% (root+shoot). This together with other evidence, suggests that if urea hydrolysis in soil is delayed by nBTPT then urea can be taken up by ryegrass as the intact molecule, albeit at a significantly slower initial rate of uptake than NH4 +-N. Protein and water soluble carbohydrate content of the plant were not significantly affected by amending urea with nBTPT however, there was a significant effect on the composition of amino acids in the roots and shoots, suggesting a difference in metabolism.Although nBTPT-amended urea affected plant urease activity and caused some leaf-tip scorch the effects were transient and short-lived. The previously reported benefit of nBTPT in reducing NH3 volatilization of urea would appear to far outweigh any of the observed short-term effects, as dry-matter production of ryegrass is increased.  相似文献   
93.
I analyzed the rates of net N mineralization and nitrification of soils from seven sites in a Hawaiian wet montane forest. The sites differ in age, ranging from 400 to 4,100,000 yr, but are comparable in other variables (all at 1200 miasl with 4000 mm or more mean annual rainfall), and the chronosequence simulated a development of soils from basaltic lava. Soils were incubated for 20 days at 17.5 °C, which is nearly equivalent to a mean field air temperature of the sites, and at an elevated temperature of 25.5 °C under three treatments: 1) field-wet without amendments, 2) air dried to a permanent wilting point, and 3) fertilized with phosphate (NaH2PO4) at the rate of 50 g P per g dry soil. Both mineralization and nitrification rates varied significantly among the sites at the field temperature (p<.00001). Fractions of the mineralized organic matter (indexed by the N produced per g organic C) increased sharply from the youngest to the 5000-yr site before declining abruptly to a near constant value from the 9000 to the 1,400,000-yr sites. Total organic C in the top soils (<15 cm deep) increased almost linearly with age across the sites. Consequently, net NH4- and NO3-N produced on an area basis (g m-2 20 d-1) increased sharply from 0.2 in the youngest site to 1.2 in the 5000-yr site, then both became depressed once but steadily increased again. The fraction of organic matter mineralized, and the net N turnover rates were outstandingly high in the oldest site where a large amount of organic matter was observed; the topsoil organic matter which was used in this analysis appeared to be highly labile, whereas the subsurface organic matter could be relatively recalcitrant. As suggested by earlier workers, the initial increase in N turnover seemed to correspond to the increasing quantity of N in the soils through atmospheric deposition and biological fixation. The later decline in fraction of organic matter mineralized seemed to relate to increasing soil C/N ratios, increasingly recalcitrant organic matter, and poorer soil drainage with age. The elevated temperature treatment produced significantly higher amounts of N mineralization, except for the youngest site where N was most limiting, and for two sites where soil waterlogging might be severe. P fertilization invariably resulted in slower N turnovers, suggesting that soil microbes responded to added P causing N immobilization. The youngest site did not significantly respond to added P. The magnitude of immobilization was higher in older than in younger soils, suggesting that P more strongly limits microbial populations in the older soils.  相似文献   
94.
The effect of mixed intercropping of field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.), compared to monocrop cultivation, on the yield and crop-N dynamics was studied in a 4-yr field experiment using 15N-isotope dilution technique. Crops were grown with or without the supply of 5 g 15N-labeled N m-2. The effect of intercropping on the dry matter and N yields, competition for inorganic N among the intercrop components, symbiotic fixation in pea and N transfer from pea to barley were determined. As an average of four years the grain yields were similar in monocropped pea, monocropped and fertilized barley and the intercrop without N fertilizer supply. Nitrogen fertilization did not influence the intercrop yield, but decreased the proportion of pea in the yield. Relative yield totals (RYT) showed that the environmental sources for plant growth were used from 12 to 31% more efficiently by the intercrop than by the monocrops, and N fertilization decreased RYT-values. Intercrop yields were less stable than monocrop barley yields, but more stable than the yield of monocropped pea. Barley competed strongly for soil and fertilizer N in the intercrop, and was up to 30 times more competitive than pea for inorganic N. Consequently, barley obtained a more than proportionate share of the inorganic N in the intercrop. At maturity the total recovery of fertilizer N was not significantly different between crops, averaging 65% of the supplied N. The fertilizer N recovered in pea constituted only 9% of total fertilizer-N recovery in the intercrop. The amount of symbiotic N2 fixation in the intercrop was less than expected from its composition and the fixation in monocrop. This indicates that the competition from barley had a negative effect on the fixation, perhaps via shading. At maturity, the average amount of N2 fixation was 17.7 g N m-2 in the monocrop and 5.1 g N m-2 in the intercropped pea. A higher proportion of total N in pea was derived from N2 fixation in the intercrop than in the monocrop, on average 82% and 62%, respectively. The 15N enrichment of intercropped barley tended to be slightly lower than of monocropped barley, although not significantly. Consequently, there was no evidence for pea N being transferred to barley. The intercropping advantage in the pea-barley intercrop is mainly due to the complimentary use of soil inorganic and atmospheric N sources by the intercrop components, resulting in reduced competition for inorganic N, rather than a facilitative effect, in which symbiotically fixed N2 is made available to barley.Abbreviations MC monocrop - IC intercrop - PMC pea monocrop - BMC barley monocrop - PIC pea in intercrop - BIC barley in intercrop  相似文献   
95.
Summary— A major antigen of the brush border membrane of Torpedo marmorata kidney was identified and purified by immunoprecipitation. The sequence of its 18 N terminal amino acids was determined and found to be very similar to that of mammalian aminopeptidase N (EC 3.4.11.2). Indeed aminopeptidase N activity was efficiently immunoprecipitated by monoclonal antibody 180K1. The purified antigen gives a broad band at 180 kDa after SDS-gel electrophoresis, which, after treatment by endoglycosidase F, is converted to a thinner band at 140 kDa. This antigen is therefore heavily glycosylated. Depending on solubilization conditions, both the antigen and peptidase activity were recovered either as a broad peak with a sedimentation coefficient of 18S (2% CHAPS) or as a single peak of 7.8S (1% CHAPS plus 0.2 % C12E9), showing that Torpedo aminopeptidase N behaves as an oligomer stabilized by hydrophobic interactions, easily converted into a 160 kDa monomer. The antigen is highly concentrated in the apical membrane of proximal tubule epithelial cells (600 gold particles/μm2 of brush border membrane) whereas no labeling could be detected in other cell types or in other membranes of the same cells (basolatéral membranes, vacuoles or vesicles). Monoclonal antibodies prepared here will be useful tools for further functional and structural studies of Torpedo kidney aminopeptidase N.  相似文献   
96.
Biofilm formation and plasmid segregational instability in biofilm cultures of Escherichia coli DH5alpha (pMJR1750) were investigated under different medium-carbon-to-nitrogen (C/N) ratios. At C/N ratios of 0.07 and 1, net accumulation of both biofilm plasmid-bearing and plasmid-free cells continued through the entire experiment without attaining any apparent steady state. At C/N ratios of 5 and 10, net biofilm cell accumulation for the two populations reached apparent steady states after 84 and 72 h, respectively. At C/N ratios of 0.07 and 1, polysaccharide production increased slowly and reached about 2g alginate equivalent/cm(2) by the end of both experiments. At a C/N ratio of 5, polysaccharide increase significantly after 84 h, reaching about 7mug alginate equivalent/cm(2) prior to termination. At a C/N ratio of 10, polysaccharide increased significantly after 72 h and reached 21 mug alginate equivalent/cm(2) at 108 h. At C/N ratios of 0.07 and 1, protein production reached 6.5 and 4 mug/cm(2), respectively. At C/N ratios of 5 and 10, protein production increased slightly for the first 84 h and reached a maximum at 108 h, at 3 and 2 mug/cm(2), respectively, then decreased over the last 12 h of the experiment. Ratios of polysaccharide to protein increased with increasing C/N ratios. At C/N ratios of 0.07 and 1, the ratios between extracellular polysaccharide (EP) and protein were no more than 205 mug polysaccharide/mug protein, whereas those at C/N ratios of 5 and 10 increased to about 7 and 12 mug polysaccharide/mug protein, respectively.Probabilities of plasmid loss in the biofilm cultures increased with increasing C/N ratios. At C/N ratios of 0.07, 1, and 5, the probabilities of plasmid loss were 0.0013 +/- 0.011, 0.020 +/- 0.006 and 0.122 +/- 0.021, respectively. At a C/N ratio of 10, the probability of plasmid loss was significantly higher, reaching 0.38 +/- 0.125. The increase of probability of plasmid loss at higher C/N ratios results from competition between cell replication and extracellular polysaccharide production. (c) 1994 John Wiley & Sons, Inc.  相似文献   
97.
98.
We hypothesized that manganese deficient animals fed high vs moderate levels of polyunsaturated fat would either manifest evidence of increased oxidative stress or would experience compensatory changes in antioxidant enzymes and/or shifts in manganese utilization that result in decreased endogenous gut manganese losses. Rats (females in Study 1, males in Study 2,n = 8/treatment) were fed diets that contained 5 or 20% corn oil by weight and either 0.01 or 1.5 μmol manganese/g diet. In study 2,54Mn complexed to albumin was injected into the portal vein to assess gut endogenous losses of manganese. The manganese deficient rats:
1.  Had 30–50% lower liver, tibia, kidney, spleen, and pancreas manganese concentrations than manganese adequate rats;
2.  Conserved manganese through ≈70-fold reductions in endogenous fecal losses of manganese;
3.  Had lower heart manganese superoxide dismutase (MnSOD) activity; and
4.  Experienced only two minor compensatory changes in the activity of copper-zinc superoxide dismutase (CuZnSOD) and catalase.
Gut endogenous losses of manganese tended to account for a smaller proportion of absorbed manganese in rats fed high-fat diets; otherwise fat intake had few effects on tissue manganese concentrations.  相似文献   
99.
Abstract Cell volume, carbon and nitrogen content were determined for bacteria grown in batch cultures in water samples collected at five localities in western Florida, USA. Cultures were set up by inoculating 0.2 μm filtered water with 2.5 to 7.0% of 1.0 μm filtered water. Biovolumes of the bacteria were measured by epifluorescence photomicrography. Bacterial carbon and nitrogen contents were determined with a CHN analyser. During incubations, bacterial volumes doubled from 0.070±0.037 μ m3(mean ± S.E.) to 0.153 ± 0.036 μ m3 at early stationary phase. Bacterial C:N ratios ranged between 2.8 and 10.3, with a mean of 6.5, and were inversely correlated with cell volumes. Conversion factors for volume to carbon and nitrogen content were relatively high and variable, ranging from 0.21 to 161 pg C μm−3 (mean: 0.72 pg C μm−3) and from 0.05 to 0.25 pg N μm−3 (mean: 0.12 pg N μm−3). Small cells contained more C and N per unit volume than did large cells. The data suggested that biovolume to biomass conversion factors may be higher than previously thought and may be highly variable both temporally and geographically.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号