首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6404篇
  免费   620篇
  国内免费   875篇
  2023年   71篇
  2022年   83篇
  2021年   137篇
  2020年   147篇
  2019年   228篇
  2018年   226篇
  2017年   223篇
  2016年   184篇
  2015年   197篇
  2014年   320篇
  2013年   352篇
  2012年   282篇
  2011年   361篇
  2010年   270篇
  2009年   334篇
  2008年   350篇
  2007年   380篇
  2006年   329篇
  2005年   279篇
  2004年   218篇
  2003年   243篇
  2002年   207篇
  2001年   153篇
  2000年   139篇
  1999年   159篇
  1998年   124篇
  1997年   139篇
  1996年   105篇
  1995年   90篇
  1994年   95篇
  1993年   120篇
  1992年   91篇
  1991年   71篇
  1990年   60篇
  1989年   53篇
  1988年   63篇
  1987年   43篇
  1986年   61篇
  1985年   99篇
  1984年   153篇
  1983年   93篇
  1982年   112篇
  1981年   81篇
  1980年   85篇
  1979年   84篇
  1978年   45篇
  1977年   35篇
  1976年   38篇
  1975年   35篇
  1974年   25篇
排序方式: 共有7899条查询结果,搜索用时 15 毫秒
141.
The possible effects of environmental stress on plant chemistry that are important to herbivorous insects were examined by growing a wild crucifer, Erysimum cheiranthoides, under different nutrient regimes. Oviposition by the cabbage butterfly, Pieris rapae, is thought to be affected by the balance of glucosinolates (stimulants) and cardenolides (deterrents) at the surface of leaves. E. cheiranthoides seedlings were provided with three levels of nitrogen and two levels of sulfur for a period of 15 days before analysis of semiochemicals in whole leaf tissue and at the surface of the foliage. The ratio of cardenolides to glucosinolates in the plants at elevated C/N ratios followed the carbon/nutrient balance hypothesis. However, a high nitrogen supply enhanced biomass production to the extent that concentrations of secondary compounds were unchanged or reduced. The concentration of glucosinolates (glucoiberin and glucocheirolin) at the surface was positively related to whole tissue levels. However, cardenolide (erysimoside and erychroside) concentrations, which were highest in leaf tissue of nitrogen-deficient plants, had the lowest surface levels on foliage of these plants. Possible reasons for differential expression of cardenolides and glucosinolates in a plant as a result of nutrient deficiency are discussed.  相似文献   
142.
A pot experiment was conducted in a greenhouse using the 15N isotope dilution method and two reference plants, Parkia biglobosa and Tamarindus indica to estimate nitrogen fixed in four Acacia species: A raddiana, A. senegal, A. seyal and Faidherbia albida (synonym Acacia albida). For the reference plants, the 15N enrichments in leaves, stems and roots were similar. With the fixing plants, leaves and stems had similar 15N enrichments; they were higher than the 15N enrichment of roots. The amounts of nitrogen fixed at 5 months after planting were similar using either reference plant. Estimates of the percentage of N derived from fixation (%Ndfa) for the above ground parts, in contrast to %Ndfa in roots, were similar to those for the whole plant. However, none of the individual plant parts estimated accurately total N fixed in the whole plant, and excluding the roots resulted in at least 30% underestimation of the amounts of N fixed. Between species, differences in N2 fixation were observed, both for %Ndfa and total N fixed. For %Ndfa, the best were A. seyal (average, 63%) and A. raddiana (average, 62%), being at least twice the %Ndfa in A. senegal and F. albida. Because of its very high N content, A. seyal was clearly the best in total N fixed, fixing 1.62 g N plant–1 compared to an average of 0.48 g N plant–1 for the other Acacia species. Our results show the wide variability existing between Acacia species in terms of both %Ndfa and total N fixed: A. seyal was classified as having a high N2 fixing potential (NFP) while the other Acacia species had a low NFP.  相似文献   
143.
In this paper we present a conceptual model of integrated plant-soil interactions which illustrates the importance of identifying the primary belowground feedbacks, both positive and negative, which can simultaneously affect plant growth responses to elevated CO2. The primary negative feedbacks share the common feature of reducing the amount of nutrients available to plants. These negative feedbacks include increased litter C/N ratios, and therefore reduced mineralization rates, increased immobilization of available nutrients by a larger soil microbial pool, and increased storage of nutrients in plant biomass and detritus due to increases in net primary productivity (NPP). Most of the primary positive feedbacks share the common feature of being plant mediated feedbacks, the only exception being Zak et al.'s hypothesis that increased microbial biomass will be accompanied by increased mineralization rates. Plant nutrient uptake may be increased through alterations in root architecture, physiology, or mycorrhizal symbioses. Further, the increased C/N ratios of plant tissue mean that a given level of NPP can be achieved with a smaller supply of nitrogen.Identification of the net plant-soil feedbacks to enhanced productivity with elevated CO2 are a critical first step for any ecosystem. It is necessary, however, that we first identify how universally applicable the results are from one study of one ecosystem before ecosystem models incorporate this information. The effect of elevated CO2 on plant growth (including NPP, tissue quality, root architecture, mycorrhizal symbioses) can vary greatly for different species and environmental conditions. Therefore it is reasonable to expect that different ecosystems will show different patterns of interacting positive and negative feedbacks within the plant-soil system. This inter-ecosystem variability in the potential for long-term growth responses to rising CO2 levels implies that we need to parameterize mechanistic models of the impact of elevated CO2 on ecosystem productivity using a detailed understanding of each ecosystem of interest.  相似文献   
144.
The effect of N supply on the quality of Calliandra calothyrsus and Gliricidia sepium prunings was studied in a glasshouse over a 7-month growing period. Increasing the concentration of N supplied from 0.625 to 10.0 mM NO3-N resulted in increased N concentration but decreased polyphenol concentration, protein-binding capacity and C:N ratio of prunings from both species. Lignin concentration was not consistently altered by the N treatment. Mineralization of N from the prunings was measured over a 14-week period under controlled leaching and non-leaching conditions. The results indicated a strong interaction between legume species and concentration of N supply in their influence on N mineralization of the prunings applied to the soil. Differences in the %N mineralized were dictated by the quality of the prunings. The (lignin + polyphenol):N ratio was the pruning quality factor which could be used most consistently and accurately to predict N mineralization of the legume prunings incubated under leaching conditions, and the relationship was best described by a linear regression. Under non-leaching conditions, however, the protein-binding capacity appeared to be the most important parameter in determining the patterns of N release from the prunings studied. The relationship between the N mineralization rate constant and the protein-binding capacity was best described by a negative exponential function, y=0.078 exp(–0.0083x). The present study also indicated that the release of N from legume prunings containing a relatively high amount of polyphenol could be enhanced by governing the N availability conditions under which the plant is grown, for example whether or not it is actively fixing nitrogen. Estimates of pruning N mineralization after 14 weeks with the difference method averaged 6% (leaching conditions) and 22% (nonleaching conditions) more than with the 15N method for all legume prunings studied. The recovery of pruning by maize (4–38%) was well correlated with the % pruning N mineralized suggesting that incubation data closely reflect the pruning N value for a given catch crop under non-leaching conditions.  相似文献   
145.
J. Hassink 《Plant and Soil》1995,176(1):71-79
Different methods for estimating the non-fertilizer N supply (NFNS) of mineral grassland soils were compared. NFNS was defined as the N uptake on unfertilized plots. The potential mineralization rate (0–12 weeks), macroorganic matter and active microbial biomass (determined by the substrate-induced respiration method; SIR) were correlated positively with NFNS. The difference between the actual soil organic N or microbial N content (determined by the fumigation incubation method) and their contents under equilibrium conditions ( org. N and MB-N), however, gave the best estimations of NFNS. For field conditions the best estimation for NFNS was: NFNS (kg N ha–1 yr–1)=132.3+42.1× org. N (g kg–1 soil; r=0.80). This method is based on the observation that, under old grassland swards, close relationships exist between soil texture and the amounts of soil organic N and microbial N. These relationships are assumed to represent equilibrium conditions as under old swards under constant management, the gain in soil organic N and microbial N equals the losses. Soils under young grassland and recently reclaimed soils contained less soil organic N and microbial N. In such soils the amounts of organic N and microbial N increase with time, which is reflected in a lower NFNS. The annual accumulation of organic and microbial N gradually becomes smaller until organic N, microbial N and NFNS reach equilibrium. The main advantage of the difference method in comparison with the other methods is its speed and simplicity.FAX no: +31 50337291  相似文献   
146.
The perennial legume Pueraria phaseoloides is widely used as a cover crop in rubber and oil palm plantations. However, very little knowledge exists on the effect of litter mineralization from P. phaseoloides on its symbiotic N2-fixation. The contribution from symbiotic N2-fixation (Ndfa) and litter N (Ndfl) to total plant N in P. phaseoloides was determined in a pot experiment using a 15N cross-labeling technique. For determination of N2-fixation the non-fixing plant Axonopus compressus was used as a reference. The experiment was carried out in a growth chamber during 9 weeks with a sandy soil and 4 rates of ground litter (C/N=16,2.8% N). P. phaseoloides plants supplied with the highest amount of litter produced 26% more dry matter and fixed 23% more N than plants grown in soil with no litter application, but the percentage of Ndfa decreased slightly, but significantly, from 87 to 84%. The litter N uptake was directly proportional to the rate of application and constituted 10% of total plant N at the highest application rate. Additionally, a positive correlation was found between litter N uptake and the amount of fixed N2. The total recovery of litter N in plants averaged 26% at harvest (shoot + root) and was not affected by the quantity added. A parallel incubation experiment also showed that, as an average of all litter levels, 26% of the litter N was present in the inorganic N pool. The amounts of fertilizer and soil N taken up by plants decreased with litter application, probably due to microbial immobilization and denitrification. It is concluded that, within the litter levels studied, litter mineralization will result in a higher amount of N2-fixed by P. phaseoloides.  相似文献   
147.
The effect of heating and autoclaving on extractable nitrogen, N mineralisation and C metabolism was studied by heating five forest soils in the laboratory, simulating the range of effects of heat due to bushfire. Top soil (0–5 cm) was heated to 60 °C, 120 °C and 250 °C for 30 minutes; unheated soil was taken as a control. Samples of the soil heated to 250 °C were also inoculated with fresh soil to accelerate the recovery of the microbial population. Soil autoclaving was carried out as another heat treatment (moist heat). Soils were analysed immediately after heating and 3 times during seven months of incubation to assess immediate and longer-term effects of heating.Extractable N (organic and mineral forms) increased after heating to 120 °C, but decreased with further heating to 250 °C suggesting the volatilisation of N. N associated with microbial biomass diminished with heating and was barely detectable after the 250 °C treatment. Microbial biomass was an important source of soluble N in heated soils, and only partly recovered during subsequent long incubation. The amount of N mineralised during incubation depended on both soil and temperature. Nitrification did not occur when soils were heated to 250 °C (with or without inoculum), or after autoclaving, demonstrating the high sensitivity of nitrifiers to heat. At the beginning of soil incubation, respiration was enhanced in heated soils (250 °C, 250 °C inoculated) and autoclaved soils, but after 30 days of incubation respiration decreased to values either similar to or lower than those in control. This respiration pattern indicated that a fraction of labile C was released by heating, which was quickly mineralised within 30 days of incubation. These results demonstrate some effects of soil heating on C and N dynamics in forest soils.  相似文献   
148.
Metabolic changes during rooting in stem cuttings of five mangrove species   总被引:3,自引:0,他引:3  
Vegetative propagation through rooting in stem cuttings in five tree mangroves namely Bruguiera parviflora, Cynometra iripa, Excoecaria agallocha, Heritiera fomes, and Thespesia populnea using IAA, IBA and NAA was reported. Spectacular increase in the root number was noted in the cuttings of H. fomes and C. iripa treated together with IBA (5000 ppm) and NAA (2500 ppm). The highest number of roots was obtained with IBA (2500 ppm) and NAA (500 ppm) in E. agallocha. B. parviflora and T. populnea responded better to IAA and IBA treatment. The species specific variation in the rooting response to exogenous application of auxins was reflected in the metabolic changes during initiation and development of roots in cuttings. Biochemical analysis showed increase of reducing sugar in the above-girdled tissues at initiation as well as subsequent development of roots which was further enhanced by the use of auxins. Decreases in the total sugar, total carbohydrate and polyphenols and increase in total nitrogen were recorded in the girdled tissues and the high C/N ratio at the initial stage helped in initiation of roots in all the species. Interaction of IBA and NAA promoted starch hydrolysis better than IAA and IBA during root development and subsequently reduced the C/N ratio and increased the protein-nitrogen activity during root development which suggest the auxin influenced mobilization of nitrogen to the rooting zone.Abbreviations IAA Indole-3-acetic acid - IBA Indole-butyric acid - NAA A-naphthalene acetic acid  相似文献   
149.
Nitrogenous excretion in two snails, Littorina saxatilis (high intertidal) and L. obtusata (low intertidal) was studied in relation to temperature acclimation (at 4° and 21°C), including total N excretion rates, the fraction of urea in N excretion, corresponding O:N ratios and the partitioning of deaminated protein between catabolic and anabolic processes at 4°, 11° and 21°C. Aggregate N excretion rates in both species showed no significant compensatory adjustments following acclimation. Total weight specific N excretion rates at 21°C were higher in standard 3 mg L. saxatilis (739 ng N mg−1 h−1) than standard 5 mg L. obtusata (257 ng N mg−1 h−1) for snails acclimated to 21°C. Comparisons of Q10 values of total weight specific N excretion to Q10 values for weight specific oxygen consumption ({xxV}O2) between 4° to 11 °C and 11° to 21°C indicated that, while total rates of catabolic metabolism ({xxV}O2) and protein deamination in L. obtusata were essentially parallel, the relationship between N excretion and {xxV}O2 in L. saxatilis revealed the partitioning of a larger share of deaminated protein carbon into anabolism at 4° and 21°C than at 11°C. Urea N accounted for a larger share of aggregate N excreted in L. saxatilis than in L. obtusata, but in both species urea N is a greater proportion of total N excreted when acclimated at 4°C (urea N: ammonia N ratio range: 1 to 2.15) than in snails acclimated to 21°C (urea N: ammonia N ratio range: 0.46 to 1.39). Molar O:N ratios indicate that the proportion of metabolism supported by protein catabolism is greater in L. saxatilis (O:N range: 2.5–8.4) than in L. obtusata (O:N range: 7.3–13.0). In both species, regardless of acclimation temperature, the O:N ratios are generally lowest (high protein catabolism) at 4°C and highest at 21°C.  相似文献   
150.
    
In order to study the physiological role of aminopeptidase A (APA),several -mercapto--amino acyl dipeptides were synthesized toobtain compounds having a high affinity for APA and a high selectivityversus aminopeptidase N (APN). Sulfonamide and carboxylate moieties whichhave been shown to be recognized by the S1 subsite of theenzyme were introduced on the side chain of the -mercapto--aminoacyl sub-unit, the latter being coupled to dipeptides optimized to interactwith the S1 andS2 subsites by means of combinatorialchemistry. Good affinities (16 nM) were obtained, the selectivity factorsbeing up to 160-fold versus APN.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号