首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48145篇
  免费   17630篇
  国内免费   882篇
  66657篇
  2023年   76篇
  2022年   107篇
  2021年   566篇
  2020年   2889篇
  2019年   4468篇
  2018年   4717篇
  2017年   4698篇
  2016年   4378篇
  2015年   4263篇
  2014年   4285篇
  2013年   4651篇
  2012年   4012篇
  2011年   4226篇
  2010年   3671篇
  2009年   2563篇
  2008年   2715篇
  2007年   2191篇
  2006年   2142篇
  2005年   1794篇
  2004年   1423篇
  2003年   1538篇
  2002年   1323篇
  2001年   980篇
  2000年   538篇
  1999年   386篇
  1998年   124篇
  1997年   144篇
  1996年   116篇
  1995年   98篇
  1994年   95篇
  1993年   132篇
  1992年   101篇
  1991年   67篇
  1990年   58篇
  1989年   51篇
  1988年   60篇
  1987年   41篇
  1986年   58篇
  1985年   100篇
  1984年   152篇
  1983年   96篇
  1982年   111篇
  1981年   78篇
  1980年   85篇
  1979年   84篇
  1978年   45篇
  1977年   34篇
  1976年   38篇
  1975年   35篇
  1974年   25篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Global change may have profound effects on soil nitrogen (N) cycling that can induce positive feedback to climate change through increased nitrous oxide (N2O) emissions mediated by nitrification and denitrification. We conducted a meta-analysis of the effects of elevated CO2 on nitrification and denitrification based on 879 observations from 58 publications and 46 independent elevated CO2 experiments in terrestrial ecosystems. We investigated the effects of elevated CO2 alone or combined with elevated temperature, increased precipitation, drought, and N addition. We assessed the response to elevated CO2 of gross and potential nitrification, potential denitrification, and abundances of related functional genes (archaeal amoA, bacterial amoA, nirK, nirS, and nosZ). Elevated CO2 increased potential nitrification (+28%) and the abundance of bacterial amoA functional gene (+62%) in cropland ecosystems. Elevated CO2 increased potential denitrification when combined with N addition and higher precipitation (+116%). Elevated CO2 also increased the abundance of nirK (+25%) and nirS (+27%) functional genes in terrestrial ecosystems and of nosZ (+32%) functional gene in cropland ecosystems. The increase in the abundance of nosZ under elevated CO2 was larger at elevated temperature and high N (+62%). Four out of 14 two-way interactions tested between elevated CO2 and elevated temperature, elevated CO2 and increased precipitation, and elevated CO2 and N addition were marginally significant and mostly synergistic. The effects of elevated CO2 on potential nitrification and abundances of bacterial amoA and nirS functional genes increased with mean annual temperature and mean annual precipitation. Our meta-analysis thus suggests that warming and increased precipitation in large areas of the world could reinforce positive responses of nitrification and denitrification to elevated CO2 and urges the need for more investigations in the tropical zone and on interactive effects among multiple global change factors, as we may largely underestimate the effects of global change on soil N2O emissions.  相似文献   
62.
Morphological data and results from scanning electron microscopy of seeds and pollen show thatNormania Lowe [syn.Solanum L. subg.Potatoe (G. Don)D'Arcy sect.Normania (Lowe)Bitter] (Solanaceae: Solaneae) should be considered as a distinct genus fromSolanum L. It has two species, one restricted to the island of Madeira [Normania triphylla (Lowe)Lowe] and the other to Tenerife and Gran Canaria [Normania nava (Webb & Berthel.)Franc.-Ort. & R. N. Lester]. These species are extremely rare and had not been found for about 100 years, untilN. nava was rediscovered in two different localities in Tenerife in 1973 and 1982.Normania triphylla was reported in two different places from northern Madeira in 1991. Both species have the highest conservation priority in the Macaronesian region.  相似文献   
63.
Dispersal propensity of green leafhoppers was compared between a tropical species, Nephotettix virescens, and a temperate species, N. cincticeps. The flight ability was measured with tethered flight technique under laboratory conditions (25°C, 16L-8D). The pre-flight period was shorter and the flight duration was longer in N. virescens than in N. cincticeps in both sexes. No significant correlations were found between the flight activity and morphometric characters for either of the two species. The results suggested that dispersal propensity of N. virescens is higher than that of N. cincticeps.  相似文献   
64.
65.
Strains of the fungal antagonist Gliocladium virens were separated into two distinct groups on the basis of secondary metabolite production in vitro. Strains of the ‘P’ group produced the antibiotics gliovirin and heptelidic acid but not the antibiotic gliotoxin and its companion, dimethylgliotoxin. Strains of the ‘Q’ group produced gliotoxin and dimethylgliotoxin but not gliovirin or heptelidic acid. Strains from both groups produced the antibiotic viridin and phytotoxin viridiol. Gliovirin was very inhibitory to Pythium ultimum but had no activity against Rhizoctonia solani, and strains that produce it were more effective seed treatment biocontrol agents of disease incited by P. ultimum. Conversely, gliotoxin was more active against R. solani than against P. ultimum, and strains that produced it were more effective seed treatments for controlling disease incited by R. solani. These results indicate that the antibiotic profiles of strains should be considered when screening strains for biocontrol efficacy, and that it may be necessary to treat seeds with a combination of strains in order to broaden the disease control spectrum.  相似文献   
66.
Aah I is a 63-residue alpha-toxin isolated from the venom of the Buthidae scorpion Androctonus australis hector, which is considered to be the most dangerous species. We report here the first chemical synthesis of Aah I by the solid-phase method, using a Fmoc strategy. The synthetic toxin I (sAah I) was renatured in DMSO-Tris buffer, purified and subjected to thorough analysis and comparison with the natural toxin. The sAah I showed physico-chemical (CD spectrum, molecular mass, HPLC elution), biochemical (amino-acid composition, sequence), immunochemical and pharmacological properties similar to those of the natural toxin. The synthetic toxin was recognized by a conformation-dependent monoclonal anti-Aah I antibody, with an IC50 value close to that for the natural toxin. Following intracerebroventricular injection, the synthetic and the natural toxins were similarly lethal to mice. In voltage-clamp experiments, Na(v) 1.2 sodium channel inactivation was inhibited by the application of sAah I or of the natural toxin in a similar way. This work describes a simple protocol for the chemical synthesis of a scorpion alpha-toxin, making it possible to produce structural analogues in time.  相似文献   
67.
The toxicity of a commercial formulation of the insecticide parathion‐methyl to the N2‐fixing filamentous cyanobacterium (blue‐green alga) Cylindrospermum, sp. was studied. A concentration of parathion‐methyl of 0.5 ppm caused growth increase in liquid growth media. The minimum inhibitory concentration of parathion‐methyl for both types (N2, fixing and nitrate supplemented) of liquid and solid media was 1.0 ppm. LC50 values were: 4.4 ppm (liquid, N2, fixing), 5.5 ppm (liquid, nitrate supplemented), 3.3 ppm (agar, N2‐fixing) and 4.0 ppm (agar, nitrate supplemented). LC100 values for N2‐fixing liquid and both types of agar media were 10.0 ppm, while for the liquid nitrate supplemented medium the LC100 was 12.0 ppm. Both akinete (spore) formation and germination were inhibited below the highest permissive concentration of 8.0 ppm, with the insecticide incorporated in the agar media. In soil, the LC50 and LC100 values for parathion‐methyl were 13.6 and 30 ppm, respectively. Both the dehydrogenase activity of heterocysts (monitored by 2,3,5‐triphenyl tetrazolium chloride reduction) and the nitrogen concentration of cultures (estimated by the micro‐Kjeldahl method) were affected by the insecticide, but the latter (N2‐fixation) was more sensitive. The Kruskal‐Wallis H test on the numbers of vegetative cells in the filaments revealed that the insecticide significantly affected the division of vegetative cells. The cyanobacterium could detoxify the growth medium containing high levels (30 and 40 ppm) of the insecticide in short‐term exposures at the expense of cell viability.  相似文献   
68.
69.
The possible effects of environmental stress on plant chemistry that are important to herbivorous insects were examined by growing a wild crucifer, Erysimum cheiranthoides, under different nutrient regimes. Oviposition by the cabbage butterfly, Pieris rapae, is thought to be affected by the balance of glucosinolates (stimulants) and cardenolides (deterrents) at the surface of leaves. E. cheiranthoides seedlings were provided with three levels of nitrogen and two levels of sulfur for a period of 15 days before analysis of semiochemicals in whole leaf tissue and at the surface of the foliage. The ratio of cardenolides to glucosinolates in the plants at elevated C/N ratios followed the carbon/nutrient balance hypothesis. However, a high nitrogen supply enhanced biomass production to the extent that concentrations of secondary compounds were unchanged or reduced. The concentration of glucosinolates (glucoiberin and glucocheirolin) at the surface was positively related to whole tissue levels. However, cardenolide (erysimoside and erychroside) concentrations, which were highest in leaf tissue of nitrogen-deficient plants, had the lowest surface levels on foliage of these plants. Possible reasons for differential expression of cardenolides and glucosinolates in a plant as a result of nutrient deficiency are discussed.  相似文献   
70.
In this paper we present a conceptual model of integrated plant-soil interactions which illustrates the importance of identifying the primary belowground feedbacks, both positive and negative, which can simultaneously affect plant growth responses to elevated CO2. The primary negative feedbacks share the common feature of reducing the amount of nutrients available to plants. These negative feedbacks include increased litter C/N ratios, and therefore reduced mineralization rates, increased immobilization of available nutrients by a larger soil microbial pool, and increased storage of nutrients in plant biomass and detritus due to increases in net primary productivity (NPP). Most of the primary positive feedbacks share the common feature of being plant mediated feedbacks, the only exception being Zak et al.'s hypothesis that increased microbial biomass will be accompanied by increased mineralization rates. Plant nutrient uptake may be increased through alterations in root architecture, physiology, or mycorrhizal symbioses. Further, the increased C/N ratios of plant tissue mean that a given level of NPP can be achieved with a smaller supply of nitrogen.Identification of the net plant-soil feedbacks to enhanced productivity with elevated CO2 are a critical first step for any ecosystem. It is necessary, however, that we first identify how universally applicable the results are from one study of one ecosystem before ecosystem models incorporate this information. The effect of elevated CO2 on plant growth (including NPP, tissue quality, root architecture, mycorrhizal symbioses) can vary greatly for different species and environmental conditions. Therefore it is reasonable to expect that different ecosystems will show different patterns of interacting positive and negative feedbacks within the plant-soil system. This inter-ecosystem variability in the potential for long-term growth responses to rising CO2 levels implies that we need to parameterize mechanistic models of the impact of elevated CO2 on ecosystem productivity using a detailed understanding of each ecosystem of interest.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号