首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   642篇
  免费   4篇
  国内免费   10篇
  2023年   2篇
  2022年   8篇
  2021年   4篇
  2020年   4篇
  2019年   2篇
  2018年   12篇
  2017年   3篇
  2016年   5篇
  2015年   10篇
  2014年   38篇
  2013年   41篇
  2012年   33篇
  2011年   51篇
  2010年   42篇
  2009年   26篇
  2008年   40篇
  2007年   33篇
  2006年   35篇
  2005年   29篇
  2004年   25篇
  2003年   24篇
  2002年   16篇
  2001年   1篇
  2000年   9篇
  1999年   15篇
  1998年   5篇
  1997年   10篇
  1996年   11篇
  1995年   18篇
  1994年   7篇
  1993年   6篇
  1992年   11篇
  1991年   10篇
  1990年   7篇
  1989年   5篇
  1988年   5篇
  1987年   3篇
  1986年   7篇
  1985年   5篇
  1984年   9篇
  1983年   4篇
  1982年   5篇
  1981年   2篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1977年   6篇
  1976年   1篇
  1975年   1篇
  1970年   1篇
排序方式: 共有656条查询结果,搜索用时 31 毫秒
101.
Intramolecular communication within myosin is essential for its function as motor, but the specific amino acid residue interactions required are unexplored within muscle cells. Using Drosophila melanogaster skeletal muscle myosin, we performed a novel in vivo molecular suppression analysis to define the importance of three relay loop amino acid residues (Ile508, Asn509, and Asp511) in communicating with converter domain residue Arg759. We found that the N509K relay mutation suppressed defects in myosin ATPase, in vitro motility, myofibril stability, and muscle function associated with the R759E converter mutation. Through molecular modeling, we define a mechanism for this interaction and suggest why the I508K and D511K relay mutations fail to suppress R759E. Interestingly, I508K disabled motor function and myofibril assembly, suggesting that productive relay-converter interaction is essential for both processes. We conclude that the putative relay-converter interaction mediated by myosin residues 509 and 759 is critical for the biochemical and biophysical function of skeletal muscle myosin and the normal ultrastructural and mechanical properties of muscle.  相似文献   
102.
Monoclonal antibodies binding to the rod portion of brush border myosin were used to localize myosin in chicken intestinal brush border cells by indirect immunofluorescence. Isolated cells, or cells still attached in a sheet, were analyzed by conventional epifluorescence microscopy, which showed that most of the immunoreactive myosin is localized in the apical brush border (terminal web), and in a basal region. In addition, a weak, diffuse granular and rod-like labeling was detected throughout the cell body. Using the laser-scanning confocal microscope (White et al., 1987), a more precise localization of the myosin within the terminal web and the cell body was obtained. In the terminal web, most of the myosin was concentrated in a circumferential ring, below the plasma membrane, and the remaining myosin was found in the inter-rootlet area. These two populations of myosin were topologically strictly related, since they were found in the same optical sections. In the cell body, as well as in the basal region, the myosin was found to be associated with the outer limiting membrane of the cell, in a cortical location, whereas essentially no myosin was detected in the cytoplasm.  相似文献   
103.
104.
This study investigates morphological adaptations of rat extensor digitorum longus muscle to chronic low-frequency stimulation (10 Hz, 10 h/d, up to 61±7d). During the early stimulation period (2–4 d), increased basophilia and accumulation of RNA were seen predominantly in type-IIB fibers. Putative satellite cell activation, as indicated by 3H-thymidine incorporation, was also evident during this phase. By 12 d, fiber composition remained unaltered, but there was a decrease in the cross-sectional area of the type-IIB fibers. Following 28 d of low-frequency stimulation, the percentage of type-IIB fibers decreased from 43±3% to 0%, while type-IID fibers increased from 30±3% to 60±6%. The fraction of type-IIA fibers tended to increase (controls 19±3%; stimulated 29±4%), whereas that of the type-I fibers was unaltered (4±1%). At this time, the cross-sectional area of type-IID fibers was unaltered, but that of type-IIA and type-I fibers increased. Further stimulation resulted in a return of type-IID fibers to control levels (23±5%), and a marked increase in type-IIA fibers (45±8%). The percentage of type-I fibers increased from 4±1% to 8±1%. Throughout each stage of chronic stimulation, there was no histological evidence of fiber degeneration and regeneration. These results indicate that, in contrast to the rabbit, chronic low-frequency stimulation-induced fiber conversion in the rat extensor digitorum longus muscle is entirely due to fiber transformation.  相似文献   
105.
Pentabromopseudilin (PBrP) is a marine antibiotic isolated from the marine bacteria Pseudomonas bromoutilis and Alteromonas luteoviolaceus. PBrP exhibits antimicrobial, anti-tumour, and phytotoxic activities. In mammalian cells, PBrP is known to act as a reversible and allosteric inhibitor of myosin Va (MyoVa). In this study, we report that PBrP is a potent inhibitor of transforming growth factor-β (TGF-β) activity. PBrP inhibits TGF-β-stimulated Smad2/3 phosphorylation, plasminogen activator inhibitor-1 (PAI-1) protein production and blocks TGF-β-induced epithelial–mesenchymal transition in epithelial cells. PBrP inhibits TGF-β signalling by reducing the cell-surface expression of type II TGF-β receptor (TβRII) and promotes receptor degradation. Gene silencing approaches suggest that MyoVa plays a crucial role in PBrP-induced TβRII turnover and the subsequent reduction of TGF-β signalling. Because, TGF-β signalling is crucial in the regulation of diverse pathophysiological processes such as tissue fibrosis and cancer development, PBrP should be further explored for its therapeutic role in treating fibrotic diseases and cancer.  相似文献   
106.
Wound healing is a complex sequence of cellular and molecular processes such as inflammation, cell migration, proliferation and differentiation. ROCK is a widely investigated Ser/Thr kinase with important roles in rearranging the actomyosin cytoskeleton. ROCK inhibitors have already been approved to improve corneal endothelial wound healing. The purpose of this study was to investigate the functions of myosin phosphatase (MP or PPP1CB), a type-1 phospho-Ser/Thr-specific protein phosphatase (PP1), one of the counter enzymes of ROCK, in skin homeostasis and wound healing. To confirm our hypotheses, we applied tautomycin (TM), a selective PP1 inhibitor, on murine skin that caused the arrest of wound closure. TM suppressed scratch closure of HaCaT human keratinocytes without having influence on the survival of the cells. Silencing of, the regulatory subunit of MP (MYPT1 or PPP1R12A), had a negative impact on the migration of keratinocytes and it influenced the cell-cell adhesion properties by decreasing the impedance of HaCaT cells. We assume that MP differentially activates migration and differentiation of keratinocytes and plays a key role in the downregulation of transglutaminase-1 in lower layers of skin where no differentiation is required. MAPK Proteome Profiler analysis on human ex vivo biopsies with MYPT1-silencing indicated that MP contributes to the mediation of wound healing by regulating the Akt signaling pathway. Our findings suggest that MP plays a role in the maintenance of normal homeostasis of skin and the process of wound healing.  相似文献   
107.
The purpose of this investigation was to compare the myosin heavy chain (MHC) isoform expression of the triceps brachii muscle and isoinertial, isometric and isokinetic strength indices in competitive bodybuilders (CB, n = 5), recreational resistance trainers (RT, n = 5), endurance-trained rowers (ER, n = 5) and control (C, n = 5) subjects. Muscle tissue samples were analysed for MHC isoform content using 6% sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The CB possessed significantly smaller (P < 0.05) percentage of MHC type IIb proteins [12.92 (SD 7.08)%] than RT [30.08 (SD 6.58)%] ER [31.20 (SD 2.74)%] and C [38.22 (SD 2.95)%] groups (i.e. CB < RT ≈ ER < C). While the content of MHC type IIa isoforms did not differ significantly between the two resistance-trained groups [CB = 55.76 (SD 5.38)%; RT = 45.72 (SD 7.8)%], CB presented significantly more type IIa MHC isoforms than ER [42.84 (SD 2.98)%] and C [34.72 (SD 1.57)%] subjects (i.e. CB ≈ RT > ER ≈ C). The MHC type I protein content did not differ significantly among RT [24.20 (SD 4.89)%] ER [25.38 (SD 1.67)%] and C [27.06 (SD 1.81)%] groups. The CB [31.32 (SD 2.67)%] presented significantly more type I MHC isoforms only in comparison with RT. However, when changes in the percentage of MHC type I isoforms were converted to effect sizes (ES), it appeared that low statistical power rather than the absence of an effect accounted for the nonsignificant differences between CB and other groups (i.e. CB > RT ≈ ER ≈ C). Significant differences existed in isoinertial strength among the trained athletes (i.e. CB > RT > ER ≈ C), while isometric and isokinetic strength were not significantly different among any of the trained groups. However, the ES transformation of data demonstrated that large differences existed between resistance-trained groups and ER for isometric and isokinetic strength (i.e. CB ≈ RT > ER ≈ C). A statistically significant negative correlation (P < 0.001) was found between MHC type IIb isoforms and isoinertial strength index (r = − 0.68). The MHC type IIa proteins were positively related to all the strength measures considered (r = 0.51 – 0.61; P < 0.001). These data demonstrated different patterns of MHC isoform expression among the different groups of athletes and it is suggested that these differences on occasion may affect the expression of strength. Accepted: 24 September 1996  相似文献   
108.
The aim of this study was to quantify the degenerative and regenerative changes in rat soleus muscle resulting from 3-week hindlimb suspension at 45° tilt (HS group, n = 8) and 4-week normal cage recovery (HS-R group, n = 7). Degenerative changes were quantified by microscope examination of muscle cross sections, and the myosin heavy chain (MHC) composition of soleus muscles was studied by sodium dodecyl sulphate polyacrylamide gel electrophoresis. At the end of 3-week hindlimb suspension, histological signs of muscle degenerative changes were detected in soleus muscles. There was a significant variability in the percentage of fibres referred to as degenerating (%dg) in individual animals in the HS group [%dg = 8.41 (SEM 0.5)%, range 4.66%–14.08%]. Moreover, %dg varied significantly along the length of the soleus muscle. The percentage of fibres with internal nuclei was less than %dg in HS-soleus muscles [4.12 (SEM 0.3)%, range 1.24%–8.86%]. In 4-week recovery rats, the greater part of the fibres that were not referred to as normal, retained central nuclei [15.8 (SEM 2.2)%, range 6.2%–21.1%]. A significant increase in the slow isoform of MHC was recorded in the HS-R rats, compared to muscles from age-matched rats (P < 0.01). These results would suggest that a cycle of myofibre degeneration-regeneration occurred during HS and passive recovery, and that the increased accumulation of slow MHC observed in soleus muscles after recovery from HS could be related to the prevalence of newly formed fibres. Accepted: 14 October 1996  相似文献   
109.
分离了扇贝闭壳肌肌钙蛋白,其分子量为46(InI),40(TnT),和22(TnC)kD.肌球蛋白B含有主要的收缩蛋白质与调节蛋白质,在有Ca2+和ATP存在时,它会发生超沉淀作用.经低离子强度溶液反复沉淀处理,即失去Ca2+-敏感性,成为去敏肌球蛋白B.在Ca2+和ATP作用下,它仍可发生超沉淀作用,但仅及最大活性的50%.若加入肌钙蛋白,则反应活性可完全恢复.兔骨骼肌肌钙蛋白可替代扇贝闭壳肌肌钙蛋白.这表明扇贝闭壳肌兼有肌动蛋白相关调节和肌球蛋白相关调节.  相似文献   
110.
The aim of this study is to investigate the mechanism underling cardiac dysfunction during sepsis, as well as the possible amelioration of this dysfunction by exogenous carbon monoxide (CO) administration. For this purpose, rats (six-week-old, male, Sprague-Dawley) were administered LPS (15 mg/kg body weight, i.p. 6 h) and/or CORM (30 mg/kg, i.p.). The decreased left ventricular ejection fraction (EF) observed in LPS group rats was recovered in the LSP + CORM group, confirming the protective role of CO against sepsis-induced myocardial depression. Proteomic as well as immunoblot analysis showed that the levels of myosin heavy and light chains (MHC and MLC) as well as α-cardiac actin (ACTC) were decreased in the LPS group, and these decreases were mitigated in the LSP + CORM group, suggesting that the amounts of major contractile proteins are decreased in depressed myocardium. Not only LPS-induced inflammatory cytokine (TNFα and IL-1β) production but also the decrease in myofilament proteins was mitigated by CORM. These results confirm the protective action of exogenously administered CO against myocardial depression during sepsis, and reveal a novel mechanism underling cardiac dysfunction during sepsis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号