首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   21篇
  国内免费   1篇
  2023年   2篇
  2022年   3篇
  2021年   5篇
  2020年   6篇
  2019年   17篇
  2018年   16篇
  2017年   10篇
  2016年   7篇
  2015年   6篇
  2014年   23篇
  2013年   15篇
  2012年   5篇
  2011年   7篇
  2010年   4篇
  2009年   10篇
  2008年   7篇
  2007年   2篇
  2006年   4篇
  2005年   5篇
  2004年   3篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1983年   4篇
  1982年   2篇
  1980年   2篇
  1978年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有196条查询结果,搜索用时 16 毫秒
31.
32.
Morphological observations and physical measurement of (I) birefringence retardation, (2) mean fibre profile width, and (3) cell volume fraction were used to characterize chick hind limb extensor tendon development. Observations were made at days 7, 10, 14 and 17 embryologic and 1-1.5 post-hatching. Microanatomical observations illustrated a sequential development of tendon microanatomy consisting of (1) a uniaxial cellular framework with discontinuous collagen fibril bundles present in day 7 embryos; (2) a continuous network of birefringent collagen fibres, and early evidence of tendon fasciculation and crimp development by embryonic day 10; and (3) completion of the basic cytoarchitecture of tendon observed at day 14 of embryogenesis. These observations suggest that collagen deposition in tendon involves first a longitudinal and then a lateral organization of tendon fibroblasts. Associated with the progressive anatomical development of tendon was an increase in birefringence retardation, mean collagen fibre profile width, and a decrease in the cell volume fraction. Birefringence retardation per unit thickness, however, did not change. This suggested that the fibril packing density of the fibres remained constant, although the fibres were observed to increase in size. These results indicate that collagen fibrillogenesis in vivo can be quantitatively studied by measurement of the birefringence retardation using polarized light.  相似文献   
33.
Summary The development of cartilage and bone in the regenerating segment of the tendon of Achilles following transection has been studied with regeneration taking place in situ, and also following transplantation to a subcutaneous site. Prior to transplantation regeneration was allowed to proceed in situ for various periods of time.It was observed that cartilage and bone develop from the cells of certain pre-cartilaginous areas which represent a metaplasia from fibroblasts. Transplantation to the subcutaneous site at a stage of regeneration when pre-cartilaginous or cartilaginous foci are present leads to the eventual development of bone in the transplant. Transplants made prior to the development of pre-cartilage or cartilage do not show bony metaplasia.It is concluded that the tension of muscle pull is a factor stimulating the metaplastic transformation of fibroblasts to chondroblasts, but once this transformation has occurred the progression to bony metaplasia continues, independently of tension.Supported by a grant from the Medical Research Council of Canada.  相似文献   
34.
35.
目的:探讨层析法新工艺和原有的低温乙醇工艺制备纤维蛋白原在大鼠跟腱断裂模型中促恢复的效果差异。方法:构建大鼠跟腱部位断裂模型,将其分为空白组(未剪跟腱)、模型组(跟腱断裂未给药)、实验组(自制纤维蛋白原2 mg/mL)与对照组(市售纤维蛋白原2 mg/mL),观察各组大鼠在手术后三周跟腱部位的最大滑动距离、弹性模量和最大抗拉力差异。结果:采用冷沉淀溶解、酸沉除杂、S/D灭活病毒、MacroCap Q柱层析、过滤等流程可从人血浆冷沉淀组分Ⅰ中成功分离纯度为90.9%纤维蛋白原。试验中构建的大鼠跟腱部位断裂模型无感染、且均存活至试验终止。生物力学结果显示,四组大鼠跟腱在最大滑行距离上无明显统计学差异(P0.05);在跟腱部位弹性模量及最大抗压力比较上,实验组及对照组均优于模型组,但与空白组仍有一定差距,且差异均具有统计学意义(P0.05)。结论:采用柱层析法分离人纤维蛋白原,不仅能有效提高分离效率,减少蛋白损失,还可增强纤维蛋白原在断裂跟腱中的促恢复效果。  相似文献   
36.
Tendons are collagen-based fibrous tissues that connect and transmit forces from muscle to bone. These tissues, which are high in collagen type I content, have been studied extensively to understand collagen fibrillogenesis. Although the mechanisms have not been fully elucidated, our understanding has continued to progress. Here, we review two prevailing models of collagen fibrillogenesis and discuss the regulation of the process by candidate cellular and extracellular matrix molecules. Although numerous molecules have been implicated in the regulation of collagen fibrillogenesis, we focus on those that have been suggested to be particularly relevant to collagen type I fibril formation during tendon development, including members of the collagen and small leucine-rich proteoglycan families, as well as other molecules, including scleraxis, cartilage oligomeric matrix protein, and cytoskeletal proteins.  相似文献   
37.
熊燕飞  万里 《生物工程学报》2008,24(11):1907-1911
胶原与壳聚糖是2种具有较好生物相容性和一定力学强度的天然高分子,可在肌腱组织工程中用于细胞外基质的构建,但二者单独使用时各有不足.本研究利用二者性能上的互补,在一定的外力场作用下,采用EDC/NHS对2种天然高分子材料进行共价交联,获得具有一定空间取向和力学强度的多孔支架,然后引入细胞黏附因子RGD进行表面修饰,构建了具有较好组织相容性和细胞亲和性及适当降解速率的人工肌腱组织细胞外基质.对基质材料的力学性能、亲水性、体外降解速率等的检测和显微观察,结果显示:所构建的多孔支架材料柔软富有弹性,抗拉强度达:15.0Mpa,相应形变为:7.33%;孔隙率:79.4%;吸水率:772%;保水率:206%;在RPM1640培养液(含10%胎牛血清)和人血清中,3周总降解率分别为4.13%和37.2%,其降解速率可与肌腱修复周期相吻合,RGD修饰后材料对3T3-L1细胞具有较好的亲和性.有望成为理想的人工肌腱组织和人造皮肤细胞外基质,或整形手术的软组织填充材料.  相似文献   
38.
Repaired Achilles tendons typically take weeks before they are strong enough to handle physiological loads. Gene therapy is a promising treatment for Achilles tendon defects. The aim of the present study was to evaluate the histological/biomechanical effects of Transforming growth factor-β1 (TGF-β1) and vascular endothelial growth factor 165 (VEGF165) gene transfer on Achilles tendon healing in rabbits. Bone Marrow-Derived Mesenchymal Stem Cells (BMSCs) were transduced with adenovirus carrying human TGF-β1 cDNA (Ad-TGF-β1), human VEGF165 cDNA (Ad-VEGF165), or both (PIRES-TGF-β1/VEGF165) Viruses, no cDNA (Ad-GFP), and the BMSCs without gene transfer and the intact tendon were used as control. BMSCs were surgically implanted into the experimentally injured Achilles tendons. TGF-β1 distribution, cellularity, nuclear aspect ratio, nuclear orientation angle, vascular number, collagen synthesis, and biomechanical features were measured at 1, 2, 4, and 8 weeks after surgery. The TGF-β1 and TGFβ1/VEGF165 co-expression groups exhibited improved parameters compared with other groups, while the VEGF165 expression group had a negative impact. In the co-expression group, the angiogenesis effects of VEGF165 were diminished by TGF-β1, while the collagen synthesis effects of TGF-β1 were unaltered by VEGF165. Thus treatment with TGF-β1 cDNA-transduced BMSCs grafts is a promising therapy for acceleration and improvement of tendon healing, leading to quicker recovery and improved biomechanical properties of Achilles tendons.  相似文献   
39.
Tendons and ligaments are often affected by mechanical injuries or chronic impairment but other than muscle or bone they possess a low healing capacity. So far, little is known about regeneration of tendons and the role of tendon precursor cells in that process. We hypothesize that perivascular cells of tendon capillaries are progenitors for functional tendon cells and are characterized by expression of marker genes and proteins typical for mesenchymal stem cells and functional tendon cells. Immunohistochemical characterization of biopsies derived from intact human supraspinatus tendons was performed. From these biopsies perivascular cells were isolated, cultured, and characterized using RT-PCR and Western blotting. We have shown for the first time that perivascular cells within tendon tissue express both tendon- and stem/precursor cell-like characteristics. These findings were confirmed by results from in vitro studies focusing on cultured perivascular cells isolated from human supraspinatus tendon biopsies. The results suggest that the perivascular niche may be considered a source for tendon precursor cells. This study provides further information about the molecular nature and localization of tendon precursor cells, which is the basis for developing novel strategies towards tendon healing and facilitated regeneration. H. Tempfer and A. Wagner have contributed equally to this paper.  相似文献   
40.
The ethiopathogenesis of rotator cuff disease remains poorly understood. Many studies advocate the importance of extra cellular matrix for the homeostasis of connective tissue. Transglutaminase enzymes family has been studied in the context of connective tissue formation and stabilisation. Here, we investigated transglutaminases expression pattern in biopsies of normal and injured supraspinatus tendons of human shoulders and in the Achilles tendons of transglutaminase 2 knock-out and wild-type mice. Our results show that different transglutaminase family members are differentially expressed in human and mouse tendons, and that transglutaminase 2 is down-regulated at mRNA and protein levels upon human supraspinatus tendon ruptures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号