首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6610篇
  免费   591篇
  国内免费   145篇
  7346篇
  2024年   12篇
  2023年   112篇
  2022年   155篇
  2021年   270篇
  2020年   233篇
  2019年   262篇
  2018年   230篇
  2017年   232篇
  2016年   244篇
  2015年   313篇
  2014年   444篇
  2013年   399篇
  2012年   324篇
  2011年   384篇
  2010年   291篇
  2009年   306篇
  2008年   340篇
  2007年   351篇
  2006年   270篇
  2005年   240篇
  2004年   208篇
  2003年   203篇
  2002年   142篇
  2001年   98篇
  2000年   114篇
  1999年   123篇
  1998年   117篇
  1997年   100篇
  1996年   105篇
  1995年   73篇
  1994年   74篇
  1993年   90篇
  1992年   64篇
  1991年   56篇
  1990年   37篇
  1989年   43篇
  1988年   27篇
  1987年   28篇
  1986年   21篇
  1985年   17篇
  1984年   18篇
  1983年   20篇
  1982年   28篇
  1981年   19篇
  1980年   14篇
  1979年   15篇
  1978年   12篇
  1976年   11篇
  1973年   14篇
  1972年   14篇
排序方式: 共有7346条查询结果,搜索用时 15 毫秒
121.
Histochemical techniques have been employed to characterize enzymatic activity in the mesocoxal muscles of the cockroach, Periplaneta americana. Through our studies of the enzymes myosin-ATPase, NADH reductase, succinic dehydrogenase (SDH), and lactic dehydrogenase (LDH), we were able to classify fibers within these muscles according to criteria established for muscle fibers of vertebrates. Many of the mesocoxal muscles possess two different and distinct populations of fibers, whereas the remaining muscles are homogeneous with respect to their constituent fibers. The data presented here indicate biochemical heterogeneity for muscles of differing structural and functional features and possible neurotrophic influences upon oxidative enzymes and myosin-ATPase isozymes.  相似文献   
122.
Summary Rats, 6 weeks old, were subjected to a program of endurance running for 3, 6 and 12 weeks. 0.5 to 0.8 m thick sections of Epon embedded soleus muscles were studied with morphometric methods.In cross-sections the area occupied by subsarcolemmal mitochondria was independent of the age, but was 53% higher after 12 weeks of training. The mean depth of the zones with subsarcolemmal mitochondria increased only 15% to about 0.9 m. Thus, the subsarcolemmal mitochondria showed a pronounced spreading at the muscle fiber surface in trained muscles. — The number of capillaries per fiber decreased slightly in controls and increased not significantly in trained muscles.It is concluded that the subsarcolemmal mitochondria supply the energy for the active transport of metabolites through the sarcolemma in oxidative muscle fibers, and that they are the limiting factor for endurance performance of the soleus muscle fibers because the changes in the capillarization were only small. It is suggested that the subsarcolemmal and the interfibrillar mitochondria have different functions and may therefore represent different types of mitochondria which can be distinguished by their morphology as well as by their biochemical properties.  相似文献   
123.
Summary The response of rat gastrocnemius muscle fibers to chronic streptozotocin-diabetes was studied. Transverse sections of this muscle from normal and diabetic rats were histochemically assayed for reduced diphosphopyridine nucleotide-diaphorase, myofibrillar adenosine triphosphatase, mitochondrial alpha-glycerophosphate dehydrogenase, beta-hydroxybutyrate dehydrogenase, and alkaline phosphatase activities. Cross-sectional areas of the fiber types were measured, and fiber capillarization and populations estimated. Chemically-induced diabetes appeared to have little effect on the metabolic or morphological properties of slow-twitch fibers. However, a general dedifferentiation occurred in the 2 fast-twitch fiber populations. There was a loss of oxidative potential in the fast-twitch-oxidative-glycolytic fibers, and a significant decrease in size in the fast-twitch-glycolytic fibers. No change in the proportions of slow- and fast-twitch fibers in the muscles of diabetic rats occurred. It is concluded that hypoinsulinism has differential effects on the 3 fiber types in heterogeneous rat skeletal muscle, and that slow-twitch fibers are least affected by the diabetic condition.  相似文献   
124.
Mixed cultivation of crops often results in increased production per unit land area, but the underlying mechanisms are poorly understood. Plants in intercrops grow differently from plants in single crops; however, no study has shown the association between plant plastic responses and the yield advantage. Here, we assessed the productivity of wheat–maize intercropping as compared to sole wheat and sole maize, and the associated differences in wheat shoot and leaf traits. In two field experiments, intercrop wheat and maize were both grown in alternating strips consisting of six rows of wheat and two rows of maize. The traits of wheat plants in border rows of the strips were compared to the traits of plants in the inner rows as well as those in sole wheat. Leaf development, chlorophyll concentration and azimuth, as well as the final leaf and ear sizes, tiller dynamics of wheat and yield components of both crops were determined. The relative densities of wheat and maize in the intercrop were 0.33 and 0.67, respectively, but the corresponding relative yields compared to the respective monocultures were 0.46 for wheat and 0.77 for maize. Compared to wheat plants in the inner rows of the intercrop strips as well as in the monoculture, border‐row wheat plants in the intercrop strips had (a) more tillers owing to increased tiller production and survival, and thus more ears, (b) larger top leaves on the main stem and tillers, (c) higher chlorophyll concentration in leaves, (d) greater number of kernels per ear and (e) smaller thousand‐grain weight. Grain yield per metre row length of border‐row wheat was 141% higher than the sole wheat, and was 176% higher than the inner‐row wheat. The results demonstrate the importance of plasticity in architectural traits for yield advantage in multispecies cropping systems.  相似文献   
125.
Evergreen oaks are an emblematic element of the Mediterranean vegetation and have a leaf phenotype that seems to have remained unchanged since the Miocene. We hypothesise that variation of the sclerophyll phenotype among Iberian populations of Quercus coccifera is partly due to an ulterior process of ecotypic differentiation. We analysed the genetic structure of nine Iberian populations using ISSR fingerprints, and their leaf phenotypes using mean and intracanopy plasticity values of eight morphological (leaf angle, area, spinescence, lobation and specific area) and biochemical traits (VAZ pool, chlorophyll and β-carotene content). Climate and soil were also characterised at the population sites. Significant genetic and phenotypic differences were found among populations and between NE Iberia and the rest of the populations of the peninsula. Mean phenotypes showed a strong and independent correlation with both genetic and geographic distances. Northeastern plants were smaller, less plastic, with smaller, spinier and thicker leaves, a phenotype consistent with the stressful conditions that prevailed in the steppe environments of the refugia within this geographic area during glaciations. These genetic, phenotypic, geographic and environmental patterns are consistent with previously reported palaeoecological and common evidence. Such consistency leads us to conclude that there has been a Quaternary divergence within the sclerophyllous syndrome that was at least partially driven by ecological factors.  相似文献   
126.
匍匐茎草本植物形态可塑性、整合作用与觅食行为研究进展   总被引:25,自引:1,他引:25  
综述了匍匐茎型克隆植物在形态可塑性、整合作用及觅食行为方面的研究进展。资源斑块性分布是生境异质性的特征之一,适应于异质性生境,匍匐茎植物对环境资源表现了一系列可塑性反应。本文着重从匍匐茎植物对光、水、肥的可塑性反应及其整合作用以及觅食行为等方面的研究进行总结分析,以期对匍匐茎型克隆植物进行更广泛深入的研究。  相似文献   
127.
植物的生活史由其有性生殖构件和营养体构件相互作用共同完成,克隆整合作为克隆植物的重要特征,其与有性生殖特征的相互作用关系却所知很少。该研究通过同质园种植实验,分析了空心莲子草的分株表型、生理、性别等与克隆整合的关系。结果表明:(1)克隆整合以及分株间是否连接对空心莲子草的表型特征、气体交换等生理性状和性别特征均有显著影响。(2)克隆整合显著缩小了雌雄同花和雄蕊心皮化两种性别植株间表型特征的差距,后代的性别特征与营养体表型特征显著相关。(3)在贫瘠的沙土基质中克隆整合明显增加了空心莲子草的营养体生长特征和气体交换等光合生理指标,但这种增加在富含有机质的塘泥基质中不明显。(4)居于不同土壤基质分株间的联系会减少分株表型特征和气体交换对生长环境的响应,并保持母体性别特征不受环境的影响,但单独居于沙土或塘泥单一土壤基质的分株性别特征却因受到环境影响而改变。因此,克隆整合有利于空心莲子草性别特征的稳定。  相似文献   
128.
A dynamic, architectural plant model simulating resource-dependent growth   总被引:17,自引:0,他引:17  
BACKGROUND AND AIMS: Physiological and architectural plant models have originally been developed for different purposes and therefore have little in common, thus making combined applications difficult. There is, however, an increasing demand for crop models that simulate the genetic and resource-dependent variability of plant geometry and architecture, because man is increasingly able to transform plant production systems through combined genetic and environmental engineering. MODEL: GREENLAB is presented, a mathematical plant model that simulates interactions between plant structure and function. Dual-scale automaton is used to simulate plant organogenesis from germination to maturity on the basis of organogenetic growth cycles that have constant thermal time. Plant fresh biomass production is computed from transpiration, assuming transpiration efficiency to be constant and atmospheric demand to be the driving force, under non-limiting water supply. The fresh biomass is then distributed among expanding organs according to their relative demand. Demand for organ growth is estimated from allometric relationships (e.g. leaf surface to weight ratios) and kinetics of potential growth rate for each organ type. These are obtained through parameter optimization against empirical, morphological data sets by running the model in inverted mode. Potential growth rates are then used as estimates of relative sink strength in the model. These and other 'hidden' plant parameters are calibrated using the non-linear, least-square method. KEY RESULTS AND CONCLUSIONS: The model reproduced accurately the dynamics of plant growth, architecture and geometry of various annual and woody plants, enabling 3D visualization. It was also able to simulate the variability of leaf size on the plant and compensatory growth following pruning, as a result of internal competition for resources. The potential of the model's underlying concepts to predict the plant's phenotypic plasticity is discussed.  相似文献   
129.
McIntyre PB  Baldwin S  Flecker AS 《Oecologia》2004,141(1):130-138
Predator-induced phenotypic plasticity is widespread among aquatic animals, however the relative contributions of behavioral and morphological shifts to reducing risk of predation remain uncertain. We tested the phenotypic plasticity of a Neotropical tadpole (Rana palmipes) in response to chemical cues from predatory Belostoma water bugs, and how phenotype affects risk of predation. Behavior, morphology, and pigmentation all were plastic, resulting in a predator-induced phenotype with lower activity, deeper tail fin and muscle, and darker pigmentation. Tadpoles in the predator cue treatment also grew more rapidly, possibly as a result of the nutrient subsidy from feeding the caged predator. For comparison to phenotypes induced in the experiment, we quantified the phenotype of tadpoles from a natural pool. Wild-caught tadpoles did not match either experimentally induced phenotype; their morphology was more similar to that produced in the control treatment, but their low swimming activity was similar to that induced by predator cues. Exposure of tadpoles from both experimental treatments and the natural pool to a free-ranging predator confirmed that predator-induced phenotypic plasticity reduces risk of predation. Risk of predation was comparable among wild-caught and predator-induced tadpoles, indicating that behavioral shifts can substantially alleviate risk in tadpoles that lack the typical suite of predator-induced morphological traits. The morphology observed in wild-caught tadpoles is associated with rapid growth and high competition in other tadpole species, suggesting that tadpoles may profitably combine a morphology suited to competition for food with behaviors that minimize risk of predation.  相似文献   
130.
There is a critical need to understand patterns and causes of intraspecific variation in physiological performance in order to predict the distribution and dynamics of wild populations under natural and human‐induced environmental change. However, the usual explanation for trait differences, local adaptation, fails to account for the small‐scale phenotypic and genetic divergence observed in fishes and other species with dispersive early life stages. We tested the hypothesis that local‐scale variation in the strength of selective mortality in early life mediates the trait composition in later life stages. Through in situ experiments, we manipulated exposure to predators in the coral reef damselfish Dascyllus aruanus and examined consequences for subsequent growth performance under common garden conditions. Groups of 20 recently settled D. aruanus were outplanted to experimental coral colonies in Moorea lagoon and either exposed to natural predation mortality (52% mortality in three days) or protected from predators with cages for three days. After postsettlement mortality, predator‐exposed groups were shorter than predator‐protected ones, while groups with lower survival were in better condition, suggesting that predators removed the longer, thinner individuals. Growth of both treatment groups was subsequently compared under common conditions. We did not detect consequences of predator exposure for subsequent growth performance: Growth over the following 37 days was not affected by the prior predator treatment or survival. Genotyping at 10 microsatellite loci did indicate, however, that predator exposure significantly influenced the genetic composition of groups. We conclude that postsettlement mortality did not have carryover effects on the subsequent growth performance of cohorts in this instance, despite evidence for directional selection during the initial mortality phase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号