首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2724篇
  免费   54篇
  国内免费   14篇
  2023年   11篇
  2022年   47篇
  2021年   64篇
  2020年   52篇
  2019年   63篇
  2018年   46篇
  2017年   53篇
  2016年   54篇
  2015年   101篇
  2014年   187篇
  2013年   171篇
  2012年   133篇
  2011年   195篇
  2010年   143篇
  2009年   99篇
  2008年   110篇
  2007年   122篇
  2006年   80篇
  2005年   84篇
  2004年   78篇
  2003年   67篇
  2002年   44篇
  2001年   19篇
  2000年   39篇
  1999年   49篇
  1998年   47篇
  1997年   49篇
  1996年   37篇
  1995年   44篇
  1994年   52篇
  1993年   42篇
  1992年   43篇
  1991年   41篇
  1990年   22篇
  1989年   39篇
  1988年   25篇
  1987年   19篇
  1986年   13篇
  1985年   20篇
  1984年   19篇
  1983年   18篇
  1982年   24篇
  1981年   17篇
  1980年   15篇
  1979年   14篇
  1978年   9篇
  1977年   10篇
  1976年   11篇
  1973年   14篇
  1972年   14篇
排序方式: 共有2792条查询结果,搜索用时 31 毫秒
61.
The purpose of this study was to compare different normalization methods of electromyographic (EMG) activity of antagonists during isokinetic eccentric and concentric knee movements. Twelve women performed three maximum knee extensions and flexions isometrically and at isokinetic concentric and eccentric angular velocities of 30 °·s−1, 90 °·s−1, 120 °·s−1 and 150 °·s−1. The EMG activity of the vastus lateralis, rectus femoris, vastus medialis and hamstrings was recorded. The antagonist integrated IEMG values were normalized relative to the EMG of the same muscle during an isometric maximal action (static method). The values were also expressed as a percentage of the EMG activity of the same muscle, at the same angle, angular velocity and muscle action (dynamic method) when the muscle was acting as an agonist. Three-way analysis of variance (ANOVA) designs indicated significantly greater IEMG normalized with the dynamic method compared to the EMG derived using the static method (P < 0.05). These differences were more evident at concentric angular velocities and at the first and last 20 ° of the movement. The present findings demonstrate that the method of normalization significantly influences the conclusions on antagonistic activity during isokinetic maximum voluntary efforts. The dynamic method of normalization is more appropriate because it considers the effects of muscle action, muscle length and angular velocity on antagonist IEMG.  相似文献   
62.
S. A. Munks  B. Green 《Oecologia》1995,101(1):94-104
This study examines the annual energetics of a small folivorous marsupial, Pseudocheirus peregrinus. Particular attention was given to the energy and time allocated to reproduction by the females. Daily energy expenditure was measured directly using the doubly labelled water technique. Energy transferred to the young via the milk was estimated from information on milk composition and production. There was no significant seasonal variation in the energy expenditure or water influx of males or females. The mean daily energy expenditure of a 1-kg non-lactating adult ringtail possum was 615 kJ day–1 or 2.2 times standard metabolic rate. Females showed significant changes in daily energy expenditure according to their reproductive status. Without the burden of lactation the total annual energy expenditure of an adult female was estimated as 212.4 MJ kg–1 year–1. The total annual energy expenditure of a female rearing two young was 247.5 MJ kg–1 year–1, with the late stage of lactation constituting the most energetically expensive period accounting for 30% of the total yearly energy expenditure during 24% of the time. Total metabolisable energy allocation during reproduction (22 MJ kg) was similar to estimates available for other herbivores, although, the peak metabolisable energy allocation during lactation (759 kJ day–1) was lower than values available for other herbivores. The total energy requirement for reproduction (metabolisable energy plus potential energy exported to young via milk) suggests that the ringtail possum also has a relatively low overall energy investment in reproduction. It is suggested that the lactational strategy of the ringtail possum has been selected in order to spread the energy demands of reproduction over time due to constraints on the rate of energy intake imposed by a leaf diet and/or to prolong the mother-young bond. The strategies a female ringtail possum may employ to achieve energy balance when faced with the energy demands of reproduction are discussed.  相似文献   
63.
The field metabolic rates (FMR) and rates of water flux were measured in two species of varanid lizards over five periods of the year in tropical Australia. The energetics of these species were further investigated by directly measuring activity (locomotion) and body temperatures of free-ranging animals by radiotelemetry, and by measuring standard metabolic rate (over a range of body temperatures) and activity metabolism in the laboratory. Seasonal differences in the activity and energetics were found in these goannas despite similar, high daytime temperatures throughout the year in tropical Australia. Periods of inactivity were associated with the dry times of the year, but the onset of this period of inactivity differed with respect to habitat even within the same species. Varanus gouldii, which inhabit woodlands only, were inactive during the dry and late dry seasons. V. panoptes that live in the woodland had a similar seasonal pattern of activity, but V. panoptes living near the floodplain of the South Alligator River had their highest levels of activity during the dry season when they walked long distances to forage at the receding edge of the floodplain. However, during the late dry season, after the floodplain had dried completely, they too became inactive. For V. gouldii, the rates of energy expenditure were 196 kJ kg–1 day–1 for active animals and 66 kJ kg–1 day–1 for inactive animals. The rates of water influx for these groups were respectively 50.7 and 19.5 ml kg–1 day–1. For V. panoptes, the rates of energy expenditure were 143 kJ kg–1 day–1 for active animals and 56 kJ kg–1 day–1 for inactive animals. The rates of water influx for these two groups were respectively 41.4 and 21.0 ml kg–1 day–1. We divided the daily energy expenditure into the proportion of energy that lizards used when in burrows, out of burrows but inactive, and in locomotion for the two species during the different seasons. The time spent in locomotion by V. panoptes during the dry season is extremely high for a reptile (mean of 3.5 h/day spent walking), and these results provide an ecological correlate to the high aerobic capacity found in laboratory measurements of some species of varanids.  相似文献   
64.
Experiments were performed on two patients with custom-made instrumented massive proximal femoral prostheses implanted after tumour resection. In vivo axial forces transmitted along the prostheses were telemetered during level walking, single- and double-leg stance, and isometric exercises of the hip muscles. These activities varied the lever arms available to the external loads: minimum for double-leg stance and maximum for hip isometric exercises. Kinematic, force plate, EMG and telemetered force data were recorded simultaneously. The force magnification ration (FMR; the ratio of the telemetered axial force to the external force) was calculated. The FMRs ranged from 1.3 (during double-leg stance) to 29.8 (during abductors test), indicating that a major part of the axial force in the long bones is a response to muscle activity, the strength of which depends on the lever arms available to the external loads. From these results, it was shown that the bulk of the bending moment along limbs is transmitted by a combination of tensile forces in muscles and compressive forces in bones, so moments transmitted by the bones are smaller than the limb moments. It was concluded that appropriate simulation of muscle forces is important in experimental or theoretical studies of load transmission along bones.  相似文献   
65.
The evolutionary relationship of muscle and nonmuscle actin isoforms in deuterostomia was studied by the isolation and characterization of two actin genes from the cephalochordate Branchiostoma lanceolatum and two from the hemichordate Saccoglossus kowalevskii The Branchiostoma genes specify a muscle and a nonmuscle actin type, respectively. Together with earlier results on muscle actins from vertebrates and urochordates, a N-terminal sequence signature is defined for chordate muscle actins. These diagnostic amino acid residues separate the chordates from the echinoderms and other metazoa. Although the two Saccoglossus actins characterized so far lack the diagnostic residues, in line with the presumptive phylogenetic position of hemichordates outside the chordates, a definitive conclusion can only be expected once the full complement of actin genes of Saccoglossus is established. Comparison of the intron patterns of the various deuterostomic actin genes shows that intron 330-3, which is present in all vertebrate genes, is conspicuously absent from nonvertebrate genes. The possible origin of this intron is discussed. Received: 4 July 1997 / Accepted: 29 August 1997  相似文献   
66.
Actin is a highly conserved protein although many isoforms exist. In vertebrates and insects the different actin isoforms can be grouped by their amino acid sequence and tissue-specific gene expression into muscle and nonmuscle actins, suggesting that the different actins may have a functional significance. We ask here whether atomic models for G- and F-actins may help to explain this functional diversity. Using a molecular graphics program we have mapped the few amino acids that differ between isoactins. A small number of residues specific for muscle actins are buried in internal positions and some present a remarkable organization. Within the molecule, the replacements observed between muscle and nonmuscle actins are often accompanied by compensatory changes. The others are dispersed on the protein surface, except for a cluster located at the N-terminus which protrudes outward. Only a few of these residues specific for muscle actins are present in known ligand binding sites except the N-terminus, which has a sequence specific for each isoactin and is directly implicated in the binding to myosin. When we simulated the replacements of side chains of residues specific for muscle actins to those specific for nonmuscle actins, the N-terminus appears to be less compact and more flexible in nonmuscle actins. This would represent the first conformational grounds for proposing that muscle and nonmuscle actins may be functionally distinguishable. The rest of the molecule is very similar or identical in all the actins, except for a possible higher internal flexibility in muscle actins. We propose that muscle actin genes have evolved from genes of nonmuscle actins by substitutions leading to some conformational changes in the protruding N-terminus and the internal dynamics of the main body of the protein. Received: 15 March 1996 / Accepted: 14 July 1996  相似文献   
67.
At muscle-tendon junctions of red and of white axial muscle fibres of carp, new sarcomeres are found adjacent to existing sarcomeres along the bundles of actin filaments that connect the myofibrils with the junctional sarcolemma. As the filament bundles that transmit force to the junction originate proximal to new sarcomeres, they probably relieve these new sarcomeres from premature loading. In red fibres, these filament bundles are long (up to 20 m) and dense, permitting light-microscopical immunohistochemistry (double reactions: anti-titin or anti--actinin and phalloidin). New sarcomeres have clear I bands; their A band lengths are similar to those of older sarcomeres and the thick filaments lie in register. T tubules are found at the distal side of new sarcomeres but terminal Z lines are absent. The late addition of -actinin suggests that -actinin mainly has a stabilizing role in sarcomere formation. The presence of titin in the terminal fibre protrusions is in agreement with its supposed role in sarcomere formation, viz. the integration of thin and thick filaments. The absence of a terminal Z line from sarcomeres with well-registered A bands suggests that this structure is not essential for the anchorage of connective (titin) filaments.  相似文献   
68.
69.
The splanchnic circulation can make a major contribution to blood flow changes. However, the role of the splanchnic circulation in the reflex adjustments to the blood pressure increase during isometric exercise is not well documented. The central command and the muscle chemoreflex are the two major mechanisms involved in the blood pressure response to isometric exercise. This study aimed to examine the behaviour of the superior mesenteric artery during isometric handgrip (IHG) at 30% maximal voluntary contraction (MVC). The pulsatility index (PI) of the blood velocity waveform of the superior mesenteric artery was taken as the study parameter. A total of ten healthy subjects [mean age, 21.1 (SEM 0.3) years] performed an IHG at 30% MVC for 90 s. At 5 s prior to the end of the exercise, muscle circulation was arrested for 90 s to study the effect of the muscle chemoreflex (post exercise arterial occlusion, PEAO). The IHG at 30% MVC caused a decrease in superior mesenteric artery PI, from 4.84 (SEM 1.57) at control level to 3.90 (SEM 1.07) (P = 0.015). The PI further decreased to 3.17 (SEM 0.70) (P = 0.01) during PEAO. Our results indicated that ergoreceptors may be involved in the superior mesenteric artery vasodilatation during isometric exercise.  相似文献   
70.
The purpose of this study was to determine if differences exist between the control strategies of two antagonist thigh muscles during knee flexion and extension muscular coactivation. Surface myoelectric signal (MES) of the quadriceps (rectus femoris) and the hamstrings (semitendinosus) were obtained from both muscles while performing step-wise increasing contractions during flexion and extension with the knee at 1.57 rad of flexion (90 degrees). The median frequency of the power density spectrum, which is related to the average muscle fiber action potential conduction velocity and therefore to motor unit recruitment, was calculated from each MES. The results suggest that, in all the subjects tested, when the muscle acts as antagonist most motor units are recruited up to 50% of the maximal voluntary force, whereas when the muscle acts as antagonist motor units are recruited up to 40% of the maximal voluntary force. The force range past 40–50% of the maximal force is also characterized by differences between the agonist/antagonist.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号