首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2749篇
  免费   47篇
  国内免费   15篇
  2023年   12篇
  2022年   48篇
  2021年   70篇
  2020年   47篇
  2019年   62篇
  2018年   52篇
  2017年   55篇
  2016年   56篇
  2015年   99篇
  2014年   195篇
  2013年   182篇
  2012年   138篇
  2011年   210篇
  2010年   144篇
  2009年   102篇
  2008年   113篇
  2007年   126篇
  2006年   96篇
  2005年   89篇
  2004年   86篇
  2003年   68篇
  2002年   43篇
  2001年   18篇
  2000年   34篇
  1999年   45篇
  1998年   39篇
  1997年   45篇
  1996年   34篇
  1995年   36篇
  1994年   41篇
  1993年   39篇
  1992年   39篇
  1991年   43篇
  1990年   17篇
  1989年   29篇
  1988年   26篇
  1987年   17篇
  1986年   10篇
  1985年   19篇
  1984年   20篇
  1983年   18篇
  1982年   26篇
  1981年   16篇
  1980年   15篇
  1979年   13篇
  1978年   9篇
  1977年   10篇
  1976年   11篇
  1973年   14篇
  1972年   14篇
排序方式: 共有2811条查询结果,搜索用时 15 毫秒
991.
In this study, we investigated whether epigallocatechin gallate (EGCg) affects glucose uptake activity and the translocation of insulin-sensitive glucose transporter (GLUT) 4 in skeletal muscle. A single oral administration of EGCg at 75 mg/kg body weight promoted GLUT4 translocation in skeletal muscle of rats. EGCg significantly increased glucose uptake accompanying GLUT4 translocation in L6 myotubes at 1 nM. The translocation of GLUT4 was also observed both in skeletal muscle of mice and rats ex vivo and in insulin-resistant L6 myotubes. Wortmannin, an inhibitor of phosphatidylinositol 3′-kinase, inhibited both EGCg- and insulin-increased glucose uptakes, while genistein, an inhibitor of tyrosine kinase, failed to inhibit the EGCg-increased uptake. Therefore, EGCg may improve hyperglycemia by promoting GLUT4 translocation in skeletal muscle with partially different mechanism from insulin.  相似文献   
992.
Postural control requires the coordination of multiple muscles to achieve both endpoint force production and postural stability. Multiple muscle activation patterns can produce the required force for standing, but the mechanical stability associated with any given pattern may vary, and has implications for the degree of delayed neural feedback necessary for postural stability. We hypothesized that muscular redundancy is reduced when muscle activation patterns are chosen with respect to intrinsic musculoskeletal stability as well as endpoint force production. We used a three-dimensional musculoskeletal model of the cat hindlimb with 31 muscles to determine the possible contributions of intrinsic muscle properties to limb stability during isometric force generation. Using dynamic stability analysis we demonstrate that within the large set of activation patterns that satisfy the force requirement for posture, only a reduced subset produce a mechanically stable limb configuration. Greater stability in the frontal-plane suggests that neural control mechanisms are more highly active for sagittal-plane and for ankle joint control. Even when the limb was unstable, the time-constants of instability were sufficiently great to allow long-latency neural feedback mechanisms to intervene, which may be preferential for movements requiring maneuverability versus stability. Local joint stiffness of muscles was determined by the stabilizing or destabilizing effects of moment-arm versus joint angle relationships. By preferentially activating muscles with high local stiffness, muscle activation patterns with feedforward stabilizing properties could be selected. Such a strategy may increase intrinsic postural stability without co-contraction, and may be useful criteria in the force-sharing problem.  相似文献   
993.
Ca2+-ATPase of muscle sarcoplasmic reticulum is an ATP-powered Ca2+-pump that establishes a >10,000-fold concentration gradient across the membrane. Its crystal structures have been determined for nine different states that cover nearly the entire reaction cycle. Presented here is a brief structural account of the ion pumping process, which is achieved by a series of very large domain rearrangements.  相似文献   
994.
In the prediction of bone remodelling processes after total hip replacement (THR), modelling of the subject-specific geometry is now state-of-the-art. In this study, we demonstrate that inclusion of subject-specific loading conditions drastically influences the calculated stress distribution, and hence influences the correlation between calculated stress distributions and changes in bone mineral density (BMD) after THR.For two patients who received cementless THR, personalized finite element (FE) models of the proximal femur were generated representing the pre- and post-operative geometry. FE analyses were performed by imposing subject-specific three-dimensional hip joint contact forces as well as muscle forces calculated based on gait analysis data. Average values of the von Mises stress were calculated for relevant zones of the proximal femur. Subsequently, the load cases were interchanged and the effect on the stress distribution was evaluated. Finally, the subject-specific stress distribution was correlated to the changes in BMD at 3 and 6 months after THR.We found subject-specific differences in the stress distribution induced by specific loading conditions, as interchanging of the loading also interchanged the patterns of the stress distribution. The correlation between the calculated stress distribution and the changes in BMD were affected by the two-dimensional nature of the BMD measurement.Our results confirm the hypothesis that inclusion of subject-specific hip contact forces and muscle forces drastically influences the stress distribution in the proximal femur. In addition to patient-specific geometry, inclusion of patient-specific loading is, therefore, essential to obtain accurate input for the analysis of stress distribution after THR.  相似文献   
995.
Tsai YL  Hou CW  Liao YH  Chen CY  Lin FC  Lee WC  Chou SW  Kuo CH 《Life sciences》2006,78(25):2953-2959
The current study determined the interactive effects of ischemia and exercise training on glycogen storage and GLUT4 expression in skeletal muscle. For the first experiment, an acute 1-h tourniquet ischemia was applied to one hindlimb of both the 1-week exercise-trained and untrained rats. The contralateral hindlimb served as control. For the second experiment, 1-h ischemia was applied daily for 1 week to both trained (5 h post-exercise) and untrained rats. GLUT4 mRNA was not affected by acute ischemia, but exercise training lowered GLUT4 mRNA in the acute ischemic muscle. GLUT4 protein levels were elevated by exercise training, but not in the acute ischemic muscle. Exercise training elevated muscle glycogen above untrained levels, but this increase was reversed by chronic ischemia. GLUT4 mRNA and protein levels were dramatically reduced by chronic ischemia, regardless of whether the animals were exercise-trained or not. Chronic ischemia significantly reduced plantaris muscle mass, with a greater decrease found in the exercise-trained rats. In conclusion, the exercise training effect on muscle GLUT4 protein expression was prevented by acute ischemia. Furthermore, chronic ischemia-induced muscle atrophy was exacerbated by exercise training. This result implicates that exercise training could be detrimental to skeletal muscle with severely impaired microcirculation.  相似文献   
996.
The expression of alpha(1a)-adrenoreceptors (alpha(1a)-ARs) within the muscle spindles of rabbit masseter muscle was investigated. The alpha(1a)-ARs were detected by immunohistochemical fluorescent method and examined along the entire length of 109 cross serially sectioned spindles. The sympathetic fibers were visualized by the immunofluorescent labeling of the noradrenaline synthesizing enzymes tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH). In order to recognize the intrafusal muscle fiber types, antibodies for different myosin heavy chain isoforms (MyHCI) were used. TH and DBH immunolabeled nerve fibers have been observed within the capsule lamellar layers, in the periaxial fluid space and close to intrafusal muscle fibers. The alpha(1a)-ARs were detected on the smooth muscle cells of the blood vessels coursing in the muscle and in the capsule lamellar layers or within the periaxial fluid space of the spindles. Moreover, at the polar regions of a high percentage (88.1%) of muscle spindles a strong alpha(1a)-ARs immunoreactivity was present on the intrafusal muscle fibers. In double immunostained sections for alpha(1a)-ARs and MyHCI it was evidenced that both bag, and nuclear chain fibers express alpha(1a)-ARs. The receptors that we have detected by immunofluorescence may support a direct control by adrenergic fibers on muscle spindle.  相似文献   
997.
Myosin heavy chains (MyHCs) and fibre types in the masseter muscle of seven species of Australian marsupials (brushtail and ringtail possums, bettong, bandicoot, dunnart, two species of antechinuses) spanning three orders were studied by native myosin electrophoresis, SDS-PAGE, immunoblotting and immunohistochemistry. We found only two fibre types in the masseter muscles of these animals: (1) masticatory fibres expressing masticatory MyHC, and (2) hybrid α/β fibres that co-express α-cardiac and β-cardiac MyHCs. Masticatory fibres predominate in most species, being appropriate for predation or for chewing tough vegetable matter. The relative abundance of α/β fibres decreased from 60% to 0 in the order: ringtail possum > brushtail possum > bettong > bandicoot > dunnart/antechinus. These variations in masseter fibre type are correlated with decreasing amounts of vegetable matter in the diets of these animals. The results are in contrast to earlier work on masseter fibres of macropodids that expressed α-cardiac MyHC almost homogeneously. The fact that the bettong (Family: Potoroidae), which belong to the same marsupial superfamily (Macropodoidea) as kangaroos and wallabies (Family: Macropodidae), has not specialized in the exclusive expression of α-cardiac MyHC as members of the latter family suggests that this specialization was of recent phylogenetic origin (30 million years before present).  相似文献   
998.
Myostatin, a member of the TGF-β superfamily, is a potent negative regulator of skeletal muscle and growth. Previously, we reported Mstn1 from zebrafish and studied its influence on muscle development. In this study, we identified another form of Myostatin protein which is referred to as Mstn2. The size of Mstn2 cDNA is 1342 bp with 109 and 132 bp of 5′ and 3′-untranslated regions (UTRs), respectively. The coding region is 1101 bp encoding 367 amino acids. The identity between zebrafish Mstn1 and 2 is 66%. The phylogenetic tree revealed that the Mstn2 is an ancestral form of Mstn1. To study the functional aspects, we overexpressed mstn2 and noticed that embryos became less active and the juveniles with bent and curved phenotypes when compared to the control. The RT-PCR and in situ hybridization showed concurrent reduction of dystrophin associated protein complex (DAPC). In cryosection and in situ hybridization, we observed the disintegration of somites, lack of transverse myoseptum and loss of muscle integrity due to the failure of muscle attachment in mstn2 overexpressed embryos. Immunohistochemistry and western blot showed that there was a reduction of dystrophin, dystroglycan and sarcoglycan at translational level in overexpressed embryos. Taken together, these results indicate the suitability of zebrafish as an excellent animal model and our data provide the first in vivo evidence of muscle attachment failure by the overexpression of mstn2 and it leads to muscle loss which results in muscle dystrophy that may contribute to Duchenne syndrome and other muscle related diseases. A. Anusha Amali and Cliff Ji-Fan Lin contributed equally.  相似文献   
999.
The aim of this study was to provide direct in vivo information of the physiological and structural characteristics of active muscle fibres from a large part of the upper trapezius muscle. Two-dimensional (2-D) multi-channel surface electromyography recordings were used, with 13 × 10 electrodes covering 6 × 4.5 cm of the skin’s surface. A previously developed method was applied to detect individual propagating motor unit action potentials and to estimate their corresponding muscle fibre conduction velocity (MFCV) and muscle fibre orientation (MFO). Using these estimates, spatial distributions of MFCV and MFO were examined for five male subjects performing isometric shoulder elevation at different force levels. The main results were: (1) the general relationship between MFCV and force generation was non-systematic, with a positive relationship at the inferior part of the muscle, (2) the spatial distribution of MFCV at different force levels and fatigue was inhomogeneous and (3) the MFO was slightly different (6°) of the muscle fibres with origin superior compared to inferior to the C7 vertebra. These findings provide new information of the MFO of contracting muscle fibres and knowledge of the physiological characteristics of a large part of the upper trapezius muscle that previously was based on observations from human cadavers only.  相似文献   
1000.
Androgens are required for the maintenance of normal sexual activity in adulthood and for enhancing muscle growth and lean body mass in adolescents and adults. Androgen receptor (AR) ligands with tissue selectivity (selective androgen receptor modulators, or SARMs) have potential for treating muscle wasting, hypogonadism of aging, osteoporosis, female sexual dysfunction, and other indications. JNJ-37654032 is a nonsteroidal AR ligand with mixed agonist and antagonist activity in androgen-responsive cell-based assays. It is an orally active SARM with muscle selectivity in orchidectomized rat models. It stimulated growth of the levator ani muscle with ED(50) 0.8 mg/kg, stimulating maximal growth at a dose of 3mg/kg. In contrast, it stimulated ventral prostate growth to 21% of its full size at 3mg/kg. At the same time, JNJ-37654032 reduced prostate weight in intact rats by 47% at 3mg/kg, while having no inhibitory effect on muscle. Using magnetic resonance imaging to monitor body composition, JNJ-37654032 restored about 20% of the lean body mass lost following orchidectomy in aged rats. JNJ-37654032 reduced follicle-stimulating hormone levels in orchidectomized rats and reduced testis size in intact rats. JNJ-37654032 is a potent prostate-sparing SARM with the potential for clinical benefit in muscle-wasting diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号