首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2294篇
  免费   18篇
  国内免费   10篇
  2322篇
  2023年   9篇
  2022年   43篇
  2021年   56篇
  2020年   38篇
  2019年   48篇
  2018年   36篇
  2017年   46篇
  2016年   44篇
  2015年   85篇
  2014年   168篇
  2013年   154篇
  2012年   122篇
  2011年   178篇
  2010年   127篇
  2009年   79篇
  2008年   94篇
  2007年   98篇
  2006年   65篇
  2005年   67篇
  2004年   67篇
  2003年   51篇
  2002年   25篇
  2001年   9篇
  2000年   24篇
  1999年   37篇
  1998年   28篇
  1997年   38篇
  1996年   30篇
  1995年   35篇
  1994年   37篇
  1993年   34篇
  1992年   34篇
  1991年   37篇
  1990年   17篇
  1989年   27篇
  1988年   22篇
  1987年   15篇
  1986年   9篇
  1985年   15篇
  1984年   15篇
  1983年   16篇
  1982年   23篇
  1981年   15篇
  1980年   14篇
  1979年   12篇
  1978年   10篇
  1977年   9篇
  1976年   11篇
  1973年   14篇
  1972年   14篇
排序方式: 共有2322条查询结果,搜索用时 0 毫秒
111.
The ubiquitin proteasome system is well recognized to be involved in mediating muscle atrophy in response to diverse catabolic conditions. To date, almost all of the genes that have been implicated are ubiquitin ligases. Although ubiquitination is modulated also by deubiquitinating enzymes, the roles of these enzymes in muscle wasting remains largely unexplored. In this article, the potential roles of deubiquitinating enzymes in regulating muscle size are discussed. This is followed by a review of the roles described for USP19, the deubiquitinating enzyme that has been most studied in muscle wasting. This enzyme is upregulated in muscle in many catabolic conditions and its inactivation leads to protection from muscle loss induced by stimuli that are common in many illnesses causing cachexia. It can regulate both protein synthesis and protein degradation as well as myogenesis, thereby modulating the key processes that control muscle mass. Roles for other deubiquitinating enzymes remain possible and to be explored.  相似文献   
112.
There is an intimate relationship between muscle and bone throughout life. However, how alterations in muscle functions in disease impact bone homeostasis is poorly understood. Amyotrophic lateral sclerosis (ALS) is a neuromuscular disease characterized by progressive muscle atrophy. In this study we analyzed the effects of ALS on bone using the well established G93A transgenic mouse model, which harbors an ALS-causing mutation in the gene encoding superoxide dismutase 1. We found that 4-month-old G93A mice with severe muscle atrophy had dramatically reduced trabecular and cortical bone mass compared with their sex-matched wild type (WT) control littermates. Mechanically, we found that multiple osteoblast properties, such as the formation of osteoprogenitors, activation of Akt and Erk1/2 pathways, and osteoblast differentiation capacity, were severely impaired in primary cultures and bones from G93A relative to WT mice; this could contribute to reduced bone formation in the mutant mice. Conversely, osteoclast formation and bone resorption were strikingly enhanced in primary bone marrow cultures and bones of G93A mice compared with WT mice. Furthermore, sclerostin and RANKL expression in osteocytes embedded in the bone matrix were greatly up-regulated, and β-catenin was down-regulated in osteoblasts from G93A mice when compared with those of WT mice. Interestingly, calvarial bone that does not load and long bones from 2-month-old G93A mice without muscle atrophy displayed no detectable changes in parameters for osteoblast and osteoclast functions. Thus, for the first time to our knowledge, we have demonstrated that ALS causes abnormal bone remodeling and defined the underlying molecular and cellular mechanisms.  相似文献   
113.
The sites and rates of mitochondrial production of superoxide and H2O2in vivo are not yet defined. At least 10 different mitochondrial sites can generate these species. Each site has a different maximum capacity (e.g. the outer quinol site in complex III (site IIIQo) has a very high capacity in rat skeletal muscle mitochondria, whereas the flavin site in complex I (site IF) has a very low capacity). The maximum capacities can greatly exceed the actual rates observed in the absence of electron transport chain inhibitors, so maximum capacities are a poor guide to actual rates. Here, we use new approaches to measure the rates at which different mitochondrial sites produce superoxide/H2O2 using isolated muscle mitochondria incubated in media mimicking the cytoplasmic substrate and effector mix of skeletal muscle during rest and exercise. We find that four or five sites dominate during rest in this ex vivo system. Remarkably, the quinol site in complex I (site IQ) and the flavin site in complex II (site IIF) each account for about a quarter of the total measured rate of H2O2 production. Site IF, site IIIQo, and perhaps site EF in the β-oxidation pathway account for most of the remainder. Under conditions mimicking mild and intense aerobic exercise, total production is much less, and the low capacity site IF dominates. These results give novel insights into which mitochondrial sites may produce superoxide/H2O2in vivo.  相似文献   
114.
Eight men (20-23 years) weight trained 3 days.week-1 for 19 weeks. Training sessions consisted of six sets of a leg press exercise (simultaneous hip and knee extension and ankle plantar flexion) on a weight machine, the last three sets with the heaviest weight that could be used for 7-20 repetitions. In comparison to a control group (n = 6) only the trained group increased (P less than 0.01) weight lifting performance (heaviest weight lifted for one repetition, 29%), and left and right knee extensor cross-sectional area (CAT scanning and computerized planimetry, 11%, P less than 0.05). In contrast, training caused no increase in maximal voluntary isometric knee extension strength, electrically evoked knee extensor peak twitch torque, and knee extensor motor unit activation (interpolated twitch method). These data indicate that a moderate but significant amount of hypertrophy induced by weight training does not necessarily increase performance in an isometric strength task different from the training task but involving the same muscle group. The failure of evoked twitch torque to increase despite hypertrophy may further indicate that moderate hypertrophy in the early stage of strength training may not necessarily cause an increase in intrinsic muscle force generating capacity.  相似文献   
115.
The release of alanine and glutamine from perfused muscle of trained and control animals was investigated. Release rates did not differ between trained and control muscle at rest. During contractions in trained muscle, alanine release was higher than at rest, while glutamine release was transiently increased. Phenylalanine release did not differ between trained and control muscle, implying that protein degradation was not increased in trained muscle. The muscle cellular adaptations to training include a selective modification of amino acid output, which could potentially influence gluconeogenic flux and alter muscle ammonia levels during contractions.  相似文献   
116.
117.
Mutations in the DES gene coding for the intermediate filament protein desmin may cause skeletal and cardiac myopathies, which are frequently characterized by cytoplasmic aggregates of desmin and associated proteins at the cellular level. By atomic force microscopy, we demonstrated filament formation defects of desmin mutants, associated with arrhythmogenic right ventricular cardiomyopathy. To understand the pathogenesis of this disease, it is essential to analyze desmin filament structures under conditions in which both healthy and mutant desmin are expressed at equimolar levels mimicking an in vivo situation. Here, we applied dual color photoactivation localization microscopy using photoactivatable fluorescent proteins genetically fused to desmin and characterized the heterozygous status in living cells lacking endogenous desmin. In addition, we applied fluorescence resonance energy transfer to unravel short distance structural patterns of desmin mutants in filaments. For the first time, we present consistent high resolution data on the structural effects of five heterozygous desmin mutations on filament formation in vitro and in living cells. Our results may contribute to the molecular understanding of the pathological filament formation defects of heterozygous DES mutations in cardiomyopathies.  相似文献   
118.
How phospholipase D (PLD) is involved in myogenesis remains unclear. At the onset of myogenic differentiation of L6 cells induced by the PLD agonist vasopressin in the absence of serum, mTORC1 complex was rapidly activated, as reflected by phosphorylation of S6 kinase1 (S6K1). Both the long (p85) and short (p70) S6K1 isoforms were phosphorylated in a PLD1-dependent way. Short rapamycin treatment specifically inhibiting mTORC1 suppressed p70 but not p85 phosphorylation, suggesting that p85 might be directly activated by phosphatidic acid. Vasopressin stimulation also induced phosphorylation of Akt on Ser-473 through PLD1-dependent activation of mTORC2 complex. In this model of myogenesis, mTORC2 had a positive role mostly unrelated to Akt activation, whereas mTORC1 had a negative role, associated with S6K1-induced Rictor phosphorylation. The PLD requirement for differentiation can thus be attributed to its ability to trigger via mTORC2 activation the phosphorylation of an effector that could be PKCα. Moreover, PLD is involved in a counter-regulation loop expected to limit the response. This study thus brings new insights in the intricate way PLD and mTOR cooperate to control myogenesis.  相似文献   
119.
Insulin causes the exocytic translocation of GLUT4 glucose transporters to stimulate glucose uptake in fat and muscle. Previous results support a model in which TUG traps GLUT4 in intracellular, insulin-responsive vesicles termed GLUT4 storage vesicles (GSVs). Insulin triggers TUG cleavage to release the GSVs; GLUT4 then recycles through endosomes during ongoing insulin exposure. The TUG C terminus binds a GSV anchoring site comprising Golgin-160 and possibly other proteins. Here, we report that the TUG C terminus is acetylated. The TUG C-terminal peptide bound the Golgin-160-associated protein, ACBD3 (acyl-CoA-binding domain-containing 3), and acetylation reduced binding of TUG to ACBD3 but not to Golgin-160. Mutation of the acetylated residues impaired insulin-responsive GLUT4 trafficking in 3T3-L1 adipocytes. ACBD3 overexpression enhanced the translocation of GSV cargos, GLUT4 and insulin-regulated aminopeptidase (IRAP), and ACBD3 was required for intracellular retention of these cargos in unstimulated cells. Sirtuin 2 (SIRT2), a NAD+-dependent deacetylase, bound TUG and deacetylated the TUG peptide. SIRT2 overexpression reduced TUG acetylation and redistributed GLUT4 and IRAP to the plasma membrane in 3T3-L1 adipocytes. Mutation of the acetylated residues in TUG abrogated these effects. In mice, SIRT2 deletion increased TUG acetylation and proteolytic processing. During glucose tolerance tests, glucose disposal was enhanced in SIRT2 knock-out mice, compared with wild type controls, without any effect on insulin concentrations. Together, these data support a model in which TUG acetylation modulates its interaction with Golgi matrix proteins and is regulated by SIRT2. Moreover, acetylation of TUG enhances its function to trap GSVs within unstimulated cells and enhances insulin-stimulated glucose uptake.  相似文献   
120.
Summary The three-dimensional structure of the sarcoplasmic reticulum (SR) in the red, white and intermediate striated muscle fibers of the extensor digitorum longus muscle of the rat was examined under a field-emission type scanning electron microscope after removal of cytoplasmic matrices by the osmium-DMSO-osmium procedure.In all three types of fibers, the terminal cisternae and transverse tubules form triads at the level of the A-I junction. Numerous slender sarcotubules, originating from the A-band side terminal cisternae, extend obliquely or longitudinally and form oval or irregular shaped networks of various sizes in front of the A-band, then become continuous with the tiny mesh (fenestrated collar) in front of the H-band. The A-and H-band SR appears as a single sheet of anastomotic tubules. Numerous sarcotubules, originating from the I-band side terminal cisternae, extend in threedimensional directions and form a multilayered network over the I-band and Z-line regions. At the I-band level, paired transversely oriented mitochondria partly embrace the myofibril. The I-band SR network is poorly developed in the narrow space between the paired mitochondria, but is well developed in places devoid of these mitochondria.The three-dimensional structure of the SR is basically the same in all three muscle fiber-types. However, the SR is sparse on the surface of mitochondria, so the mitochondria-rich red fiber has a much smaller total volume of SR than the mitochondria-poor white fiber. Moreover, the volume of SR of the intermediate fiber is intermediate between the two.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号