首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2420篇
  免费   58篇
  国内免费   10篇
  2488篇
  2023年   13篇
  2022年   54篇
  2021年   63篇
  2020年   45篇
  2019年   54篇
  2018年   50篇
  2017年   53篇
  2016年   48篇
  2015年   92篇
  2014年   172篇
  2013年   160篇
  2012年   127篇
  2011年   181篇
  2010年   135篇
  2009年   85篇
  2008年   102篇
  2007年   104篇
  2006年   70篇
  2005年   69篇
  2004年   73篇
  2003年   54篇
  2002年   28篇
  2001年   12篇
  2000年   24篇
  1999年   39篇
  1998年   30篇
  1997年   38篇
  1996年   32篇
  1995年   37篇
  1994年   38篇
  1993年   36篇
  1992年   38篇
  1991年   37篇
  1990年   19篇
  1989年   30篇
  1988年   25篇
  1987年   16篇
  1986年   10篇
  1985年   16篇
  1984年   15篇
  1983年   16篇
  1982年   23篇
  1981年   15篇
  1980年   14篇
  1979年   12篇
  1978年   10篇
  1977年   9篇
  1976年   11篇
  1973年   14篇
  1972年   14篇
排序方式: 共有2488条查询结果,搜索用时 0 毫秒
991.
    
BackgroundThe aim of this study was to determine whether changes in synergies relate to changes in gait while walking on a treadmill at multiple speeds and slopes. The hypothesis was that significant changes in movement pattern would not be accompanied by significant changes in synergies, suggesting that synergies are not dependent on the mechanical constraints but are instead neurological in origin.MethodsSixteen typically developing children walked on a treadmill for nine combinations (stages) of different speeds and slopes while simultaneously collecting kinematics, kinetics, and surface electromyography (EMG) data. The kinematics for each stride were summarized using a modified version of the Gait Deviation Index that only includes the sagittal plane. The kinetics for each stride were summarized using a modified version of the Gait Deviation Index – Kinetic which includes sagittal plane moments and powers. Within each synergy group, the correlations of the synergies were calculated between the treadmill stages.ResultsWhile kinematics and kinetics were significantly altered at the highest slope compared to level ground when walking on a treadmill, synergies were similar across stages.ConclusionsThe high correlations between synergies across stages indicate that neuromuscular control strategies do not change as children walk at different speeds and slopes on a treadmill. However, the multiple significant differences in kinematics and kinetics between stages indicate real differences in movement pattern. This supports the theory that synergies are neurological in origin and not simply a response to the biomechanical task constraints.  相似文献   
992.
    
Muscle fatigue and recovery are complex processes influencing muscle force generation capacity. While fatigue reduces this capacity, recovery acts to restore the unfatigued muscle state. Many factors can potentially affect muscle recovery, and among these may be a task dependency of recovery following an exercise. However, little has been reported regarding the history dependency of recovery after fatiguing contractions. We examined the dependency of muscle recovery subsequent to four different histories of fatiguing muscle contractions, imposed using two cycle times (30 and 60 s) during low to moderate levels (15% and 25% of maximum voluntary contraction (MVC)) of intermittent static exertions involving index finger abduction. MVC and low-frequency electrical stimulation (LFES) measures (i.e., magnitude, rise and relaxation rates) of muscle capacity were used, all of which indicated a dependency of muscle recovery on the muscle capacity state existing immediately after fatiguing exercise. This dependency did not appear to be modified by either the cycle time or exertion level leading to that state. These results imply that the post-exercise rate of recovery is primarily influenced by the immediate post-exercise muscle contractile status (estimated by MVC and LFES measures). Such results may help improve existing models of muscle recovery, facilitating more accurate predictions of localized muscle fatigue development and thereby helping to enhance muscle performance and reduce the risk of injury.  相似文献   
993.
    
Thermal tolerance is important in determining the spatial and temporal distributions of insects but the mechanisms which determine upper thermal limits remain poorly understood. In terrestrial insects heat tolerance is unlikely to be limited by oxygen supply but in some arthropods, heat stress has been shown to cause haemolymph hyperkalaemia which is known to have detrimental effects on neuromuscular excitability. It is however unresolved if heat-induced hyperkalemia is the cause or the result of cellular heat injury. To address the putative role of heat-induced hyperkalemia we quantified changes in ion and water balance in haemolymph and muscle tissue of the migratory locust during exposure to two static temperatures clustered around the CTmax (48 °C and 50 °C). We show that heat stress caused a loss of ion balance and severe haemolymph hyperkalaemia which coincided with the onset of heat stupor. Locusts were able to maintain their haemolymph volume throughout exposure, suggesting it is unlikely that osmoregulatory failure is responsible for haemolymph hyperkalaemia. When locusts were allowed to recover from heat stupor, they recovered ion balance quickly but were still unable to function optimally after 24 h. The results therefore indicate that both the haemolymph hyperkalaemia and associated depression of muscular function (heat stupor) are secondary results of cellular heat injury and that the cause of heat stupor most be sought elsewhere.  相似文献   
994.
Glucose homeostasis is determined by insulin secretion from the ß-cells in pancreatic islets and by glucose uptake in skeletal muscle and other insulin target tissues. While glutamate dehydrogenase (GDH) senses mitochondrial energy supply and regulates insulin secretion, its role in the muscle has not been elucidated. Here we investigated the possible interplay between GDH and the cytosolic energy sensing enzyme 5′-AMP kinase (AMPK), in both isolated islets and myotubes from mice and humans. The green tea polyphenol epigallocatechin-3-gallate (EGCG) was used to inhibit GDH. Insulin secretion was reduced by EGCG upon glucose stimulation and blocked in response to glutamine combined with the allosteric GDH activator BCH (2-aminobicyclo-[2,2,1] heptane-2-carboxylic acid). Insulin secretion was similarly decreased in islets of mice with ß-cell-targeted deletion of GDH (ßGlud1−/−). EGCG did not further reduce insulin secretion in the mutant islets, validating its specificity. In human islets, EGCG attenuated both basal and nutrient-stimulated insulin secretion. Glutamine/BCH-induced lowering of AMPK phosphorylation did not operate in ßGlud1−/− islets and was similarly prevented by EGCG in control islets, while high glucose systematically inactivated AMPK. In mouse C2C12 myotubes, like in islets, the inhibition of AMPK following GDH activation with glutamine/BCH was reversed by EGCG. Stimulation of GDH in primary human myotubes caused lowering of insulin-induced 2-deoxy-glucose uptake, partially counteracted by EGCG. Thus, mitochondrial energy provision through anaplerotic input via GDH influences the activity of the cytosolic energy sensor AMPK. EGCG may be useful in obesity by resensitizing insulin-resistant muscle while blunting hypersecretion of insulin in hypermetabolic states.  相似文献   
995.
    
Spinal cord injury (SCI) can result in paralysis of trunk muscles, which can affect sitting balance. The objective of this study was to analyze trunk muscle coordination of individuals with thoracic SCI and compare it to able-body individuals. A total of 27 individuals were recruited and subdivided into: (a) high thoracic SCI; (b) low thoracic SCI; and (c) able-body groups. Participants were seated and asked to lean their trunk in eight directions while trunk muscle activity was recorded. Muscle coordination was assessed using the non-negative matrix factorization (NMF) method to extract muscle modules, which are the synergistic trunk muscle activations, and their directional activation patterns. Our results showed that individuals with SCI used less muscle modules, more co-contractions, and less directional tuning, compared to able-bodied people. These results suggest impaired and simplified muscle coordination due to the loss of supraspinal input after SCI. Observed variability in muscle coordination within SCI groups also suggests that other mechanisms such as spasticity and muscle stretch reflexes or individual factors such as experience and training contributed to the postural muscle synergies. Overall, muscle coordination deficits revealed impaired neuromuscular strategies which provide implications for rehabilitation of trunk muscles during sitting balance after SCI.  相似文献   
996.
997.
    
External forces from our environment impose transverse loads on our muscles. Studies in rats have shown that transverse loads result in a decrease in the longitudinal muscle force. Changes in muscle architecture during contraction may contribute to the observed force decrease. The aim of this study was to quantify changes in pennation angle, fascicle dimensions, and muscle thickness during contraction under external transverse load.Electrical stimuli were elicited to evoke maximal force twitches in the right calf muscles of humans. Trials were conducted with transverse loads of 2, 4.5, and 10 kg. An ultrasound probe was placed on the medial gastrocnemius in line with the transverse load to quantify muscle characteristics during muscle twitches.Maximum twitch force decreased with increased transverse muscle loading. The 2, 4.5, and 10 kg of transverse load showed a 9, 13, and 16% decrease in longitudinal force, respectively. Within the field of view of the ultrasound images, and thus directly beneath the external load, loading of the muscle resulted in a decrease in the muscle thickness and pennation angle, with higher loads causing greater decreases. During twitches the muscle transiently increased in thickness and pennation angle, as did fascicle thickness. Higher transverse loads showed a reduced increase in muscle thickness. Smaller increases in pennation angle and fascicle thickness strain also occurred with higher transverse loads.This study shows that increased transverse loading caused a decrease in ankle moment, muscle thickness, and pennation angle, as well as transverse deformation of the fascicles.  相似文献   
998.
    
The mechanical output of a muscle may be characterised by having distinct functional behaviours, which can shift to satisfy the varying demands of movement, and may vary relative to a proximo-distal gradient in the muscle-tendon architecture (MTU) among lower-limb muscles in humans and other terrestrial vertebrates. We adapted a previous joint-level approach to develop a muscle-specific index-based approach to characterise the functional behaviours of human lower-limb muscles during movement tasks. Using muscle mechanical power and work outputs derived from experimental data and computational simulations of human walking and running, our index-based approach differentiated known distinct functional behaviours with varying mechanical demands, such as greater spring-like function during running compared with walking; with anatomical location, such as greater motor-like function in proximal compared with the distal lower-limb muscles; and with MTU architecture, such as greater strut-like muscles fibre function compared with the MTU in the ankle plantarflexors. The functional indices developed in this study provide distinct quantitative measures of muscle function in the human lower-limb muscles during dynamic movement tasks, which may be beneficial towards tuning the design and control strategies of physiologically-inspired robotic and assistive devices.  相似文献   
999.
    
The study of muscle activity using surface electromyography (sEMG) is commonly used for investigations of the neuromuscular system in man. Although sEMG has faced methodological challenges, considerable technical advances have been made in the last few decades. Similarly, the field of animal biomechanics, including sEMG, has grown despite being confronted with often complex experimental conditions. In human sEMG research, standardised protocols have been developed, however these are lacking in animal sEMG. Before standards can be proposed in this population group, the existing research in animal sEMG should be collated and evaluated. Therefore the aim of this review is to systematically identify and summarise the literature in animal sEMG focussing on (1) species, breeds, activities and muscles investigated, and (2) electrode placement and normalisation methods used. The databases PubMed, Web of Science, Scopus, and Vetmed Resource were searched systematically for sEMG studies in animals and 38 articles were included in the final review. Data on methodological quality was collected and summarised. The findings from this systematic review indicate the divergence in animal sEMG methodology and as a result, future steps required to develop standardisation in animal sEMG are proposed.  相似文献   
1000.
    
The aim of this study was to evaluate non-negative matrix factorization (NMF) and concatenated NMF (CNMF) to analyze and reliably extract muscle synergies. NMF and CNMF were used to extract knee joint muscle synergies from surface EMGs collected during a weight bearing, force matching task. Repeatability and between subject similarity were evaluated for each method using intra-class correlation coefficients (ICCs). High repeatability was found for CNMF (>0.99; 0.99–1.0) compared to NMF (>0.26; range 0.26–0.98). Reasonable consistency across subjects was improved using the CNMF over the NMF approach. CNMF was found to be a more reliable approach than NMF and suitable for between subject comparison of muscle synergies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号