首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2992篇
  免费   56篇
  国内免费   32篇
  3080篇
  2023年   13篇
  2022年   57篇
  2021年   63篇
  2020年   52篇
  2019年   65篇
  2018年   52篇
  2017年   74篇
  2016年   64篇
  2015年   101篇
  2014年   210篇
  2013年   182篇
  2012年   162篇
  2011年   213篇
  2010年   161篇
  2009年   117篇
  2008年   138篇
  2007年   149篇
  2006年   100篇
  2005年   110篇
  2004年   98篇
  2003年   82篇
  2002年   40篇
  2001年   19篇
  2000年   41篇
  1999年   50篇
  1998年   38篇
  1997年   51篇
  1996年   44篇
  1995年   42篇
  1994年   46篇
  1993年   45篇
  1992年   40篇
  1991年   40篇
  1990年   21篇
  1989年   32篇
  1988年   28篇
  1987年   18篇
  1986年   13篇
  1985年   16篇
  1984年   18篇
  1983年   18篇
  1982年   26篇
  1981年   18篇
  1980年   15篇
  1979年   14篇
  1978年   9篇
  1977年   10篇
  1976年   13篇
  1973年   14篇
  1972年   14篇
排序方式: 共有3080条查询结果,搜索用时 15 毫秒
21.
pHrMA4a-Z is a recombinant plasmid in which about 1.4 kb of the 5 flanking region of a gene for muscle actin HrMA4a from the ascidian Halocynthia roretzi is fused with the coding sequence of a bacterial gene for -galactosidase (lac-Z). In this study, we examined the expression of the fusion gene construct when it was introduced into eggs of another ascidian, namely Ciona savignyi. When a moderate amount of linearized pHrMA4a-Z was introduced into fertilized Ciona eggs, the expression of the reporter gene was evident in muscle cells of the larvae, suggesting that both species share a common machinery for the expression of muscle actin genes. The 5 upstream region of HrMA4a contains several consensus sequences, including a TATA box at -30, a CArG box at -116 and four E-boxes within a region of 200 bp. A deletion construct, in which only the 216-bp 5 flanking region of HrMA4a was fused with lac-Z, was expressed primarily in larval muscle cells. However, another deletion construct consisting of only the 61-bp upstream region of HrMA4a fused with lac-Z was not expressed at all. When pHrMA4a-Z or pHrMA4a-Z (–216) was injected into each of the muscle-precursor blastomeres of the 8-cell embryo, expression of the reporter gene was observed in larval muscle cells in a lineage-specific fashion. However, expression of the reporter gene was not observed when the plasmid was injected into non-muscle lineage. Therefore, the expression of the reporter gene may depend on some difference in cytoplasmic constituents between blastomeres of muscle and non-muscle lineage in the 8-cell embyo.  相似文献   
22.
To investigate the mechanism of regulation of sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA) by phospholamban (PLB), we expressed Cerulean-SERCA and yellow fluorescent protein (YFP)-PLB in adult rabbit ventricular myocytes using adenovirus vectors. SERCA and PLB were localized in the sarcoplasmic reticulum and were mobile over multiple sarcomeres on a timescale of tens of seconds. We also observed robust fluorescence resonance energy transfer (FRET) from Cerulean-SERCA to YFP-PLB. Electrical pacing of cardiac myocytes elicited cytoplasmic Ca(2+) elevations, but these increases in Ca(2+) produced only modest changes in SERCA-PLB FRET. The data suggest that the regulatory complex is not disrupted by elevations of cytosolic calcium during cardiac contraction (systole). This conclusion was also supported by parallel experiments in heterologous cells, which showed that FRET was reduced but not abolished by calcium. Thapsigargin also elicited a small decrease in PLB-SERCA binding affinity. We propose that PLB is not displaced from SERCA by high calcium during systole, and relief of functional inhibition does not require dissociation of the regulatory complex. The observed modest reduction in the affinity of the PLB-SERCA complex with Ca(2+) or thapsigargin suggests that the binding interface is altered by SERCA conformational changes. The results are consistent with multiple modes of PLB binding or alternative binding sites.  相似文献   
23.
Summary Both the fast and slow muscle fibres of advanced teleost fish are multiply innervated. The fraction of slow-fibre volume occupied by mitochondria is 31.3%, 25.5% and 24.6%, respectively, for the myotomal muscles of brook trout (Salvelinus fontinalis), crucian carp (Carassius carassius), and plaice (Pleuronectes platessa), respectively. The corresponding figures for the fast muscles of these species are 9.3%, 4.6% and 2.0%, respectively. Cytochrome-oxidase and citrate-synthetase activities in the fast muscles of 9 species of teleost range from 0.20–0.93 moles substrate utilised, g wet weight muscle-1 min-1 (at 15° C) or around 4–17% of that of the corresponding slow fibres. Ultrastructural analyses reveal a marked heterogeneity within the fast-fibre population. For example, the fraction of fibres with <1% or >10% mitochondria is 0,4,42% and 36, 12 and 0%, respectively, for trout, carp and plaice. In general, small fibres (<500 m2) have the highest and large fibres (>1,500 m2) the lowest mitochondrial densities. The complexity of mitochondrial cristae is reduced in fast compared to slow fibres.Hexokinase activities range from 0.4–2.5 in slow and from 0.08–0.7 moles, g wet weight-1 min-1 in fast muscles, indicating a wide variation in their capacity for aerobic glucose utilisation. Phosphofructokinase activities are 1.2 to 3.6 times higher in fast than slow muscles indicating a greater glycolytic potential. Lactate dehydrogenase activities are not correlated with either the predicted anaerobic scopes for activity or the anoxic tolerances of the species studied. The results indicate a considerable variation in the aerobic capacities and principal fuels supporting activity among the fast muscles of different species. Brook trout and crucian carp are known to recruit fast fibres at low swimming speeds. For these species the aerobic potential of the fast muscle is probably sufficient to meet the energy requirements of slow swimming.  相似文献   
24.
We previously demonstrated that sphingosine kinase 1 (Sphk1) expression and activity are up-regulated by exogenous palmitate (PAL) in a skeletal muscle model system and in diet-induced obesity in mice; however, potential functions and in vivo relevance of this have not been addressed. Here, we aimed to determine the mechanism by which PAL regulates SphK1 in muscle, and to determine potential roles for its product, sphingosine-1-phosphate (S1P), in muscle biology in the context of obesity. Cloning and analysis of the mouse Sphk1 promoter revealed a peroxisome proliferator-activated receptor (PPAR) α cis-element that mediated activation of a reporter under control of the Sphk1 promoter; direct interaction of PPARα was demonstrated by chromatin immunoprecipitation. PAL treatment induced the proinflammatory cytokine interleukin (IL)-6 in a manner dependent on SphK1, and this was attenuated by inhibition of the sphingosine-1-phosphate receptor 3 (S1PR3). Diet-induced obesity in mice demonstrated that IL-6 expression in muscle, but not adipose tissue, increased in obesity, but this was attenuated in Sphk1−/− mice. Moreover, plasma IL-6 levels were significantly decreased in obese Sphk1−/− mice relative to obese wild type mice, and muscle, but not adipose tissue IL-6 signaling was activated. These data indicate that PPARα regulates Sphk1 expression in the context of fatty acid oversupply and links PAL to muscle IL-6 production. Moreover, this function of SphK1 in diet-induced obesity suggests a potential role for SphK1 in obesity-associated pathological outcomes.  相似文献   
25.
Objectives:The study aimed to determine the effect of adding a school-based plyometric training program (PMT) to physical education (PE) sessions on the strength, balance, and flexibility in primary school girls.Methods:Students from grades 3-6 were randomized equally to a plyometric or control group. In the control group, students took their regular PE classes twice a week. In the plyometric group, students performed PMT twice a week during the initial 20 minutes of every PE session. The Lido Linea closed kinetic chain isokinetic dynamometer, Star excursion balance test (SEBT), and sit-and-reach test were used to assess muscle strength, balance, and flexibility, respectively, before and after nine weeks of training.Results:The improvement in extension peak force (p=0.04) and extension total work (p<0.001) was more prevalent in the PMT group than in the control group. SEBT scores had improved significantly (p<0.05) for all directions in the PMT group, except in the anterior direction, which was highly significant (p<0.001). Hamstring and lower back flexibility had improved more in the PMT group than in the control group (p<0.001).Conclusion:Adding PMT to regular PE classes has a positive and notable effect on muscle strength, balance, and flexibility in primary school students.  相似文献   
26.
Protein kinase D (PKD), a serine/threonine kinase with emerging cardiovascular functions, phosphorylates cardiac troponin I (cTnI) at Ser22/Ser23, reduces myofilament Ca2+ sensitivity, and accelerates cross-bridge cycle kinetics. Whether PKD regulates cardiac myofilament function entirely through cTnI phosphorylation at Ser22/Ser23 remains to be established. To determine the role of cTnI phosphorylation at Ser22/Ser23 in PKD-mediated regulation of cardiac myofilament function, we used transgenic mice that express cTnI in which Ser22/Ser23 are substituted by nonphosphorylatable Ala (cTnI-Ala2). In skinned myocardium from wild-type (WT) mice, PKD increased cTnI phosphorylation at Ser22/Ser23 and decreased the Ca2+ sensitivity of force. In contrast, PKD had no effect on the Ca2+ sensitivity of force in myocardium from cTnI-Ala2 mice, in which Ser22/Ser23 were unavailable for phosphorylation. Surprisingly, PKD accelerated cross-bridge cycle kinetics similarly in myocardium from WT and cTnI-Ala2 mice. Because cardiac myosin-binding protein C (cMyBP-C) phosphorylation underlies cAMP-dependent protein kinase (PKA)-mediated acceleration of cross-bridge cycle kinetics, we explored whether PKD phosphorylates cMyBP-C at its PKA sites, using recombinant C1C2 fragments with or without site-specific Ser/Ala substitutions. Kinase assays confirmed that PKA phosphorylates Ser273, Ser282, and Ser302, and revealed that PKD phosphorylates only Ser302. Furthermore, PKD phosphorylated Ser302 selectively and to a similar extent in native cMyBP-C of skinned myocardium from WT and cTnI-Ala2 mice, and this phosphorylation occurred throughout the C-zones of sarcomeric A-bands. In conclusion, PKD reduces myofilament Ca2+ sensitivity through cTnI phosphorylation at Ser22/Ser23 but accelerates cross-bridge cycle kinetics by a distinct mechanism. PKD phosphorylates cMyBP-C at Ser302, which may mediate the latter effect.  相似文献   
27.
Repeated molting of the cuticula is an integral part of arthropod and nematode development. Shedding of the old cuticle takes place on the surface of hypodermal cells, which are also responsible for secretion and synthesis of a new cuticle. Here, we use the model nematode Caenorhabditis elegans to show that muscle cells, laying beneath and mechanically linked to the hypodermis, play an important role during molting. We followed the molecular composition and distribution of integrin mediated adhesion structures called dense bodies (DB), which indirectly connect muscles to the hypodermis. We found the concentration of two DB proteins (PAT-3/β-integrin and UNC-95) to decrease during the quiescent phase of molting, concomitant with an apparent increase in lateral movement of the DB. We show that levels of the E3-ligase RNF-5 increase specifically during molting, and that RNF-5 acts to ubiquitinate the DB protein UNC-95. Persistent high levels of RNF-5 driven by a heatshock or unc-95 promoter lead to failure of ecdysis, and in non-molting worms to a progressive detachment of the cuticle from the hypodermis. These observations indicate that increased DB dynamics characterizes the lethargus phase of molting in parallel to decreased levels of DB components and that temporal expression of RNF-5 contributes to an efficient molting process.  相似文献   
28.
A cellular lineage analysis of the chick limb bud   总被引:1,自引:1,他引:1  
The chick limb bud has been used as a model system for studying pattern formation and tissue development for more than 50 years. However, the lineal relationships among the different cell types and the migrational boundaries of individual cells within the limb mesenchyme have not been explored. We have used a retroviral lineage analysis system to track the fate of single limb bud mesenchymal cells at different times in early limb development. We find that progenitor cells labeled at stage 19-22 can give rise to multiple cell types including clones containing cells of all five of the major lateral plate mesoderm-derived tissues (cartilage, perichondrium, tendon, muscle connective tissue, and dermis). There is a bias, however, such that clones are more likely to contain the cell types of spatially adjacent tissues such as cartilage/perichondrium and tendon/muscle connective tissue. It has been recently proposed that distinct proximodistal segments are established early in limb development; however our analysis suggests that there is not a strict barrier to cellular migration along the proximodistal axis in the early stage 19-22 limb buds. Finally, our data indicate the presence of a dorsal/ventral boundary established by stage 16 that is inhibitory to cellular mixing. This boundary is demarcated by the expression of the LIM-homeodomain factor lmx1b.  相似文献   
29.
The spindle pole body (SPB) in the interphase cell of the pathogenic yeast Exophiala dermatitidis was studied in detail. The SPB was located on the outer nuclear envelope and was 342 +/- 86 nm long in a haploid strain. It consisted of two disk elements that measured 151 +/- 43 nm in diameter and 103 +/- 17 nm in thickness, connected by a rod-shaped midpiece that measured 56 +/- 20 nm in length and 37 +/- 9 nm in diameter. There were considerable variations in size and morphology of interphase SPB. Some disk elements appeared spherical but others were more flattened, and there was variation in electron density. A few SPBs did not have the midpiece. The SPB of a diploid strain was 486 +/- 118 nm long, thus significantly bigger than that of the haploid strain. The SPB tended to be localized away from the nucleolus (110 +/- 48 degrees), but close to the bud (78 +/- 45 degrees). The present study highlights the necessity of observing a large number of micrographs in three-dimensions to describe accurately the ultrastructure of the SPB in yeast.  相似文献   
30.
Insulin increases glucose uptake and metabolism in skeletal muscle by signal transduction via protein phosphorylation cascades. Insulin action on signal transduction is impaired in skeletal muscle from Type 2 diabetic subjects, underscoring the contribution of molecular defects to the insulin resistant phenotype. This review summarizes recent work to identify downstream intermediates in the insulin signaling pathways governing glucose homeostasis, in an attempt to characterize the molecular mechanism accounting for skeletal muscle insulin resistance in Type 2 diabetes. Furthermore, the effects of pharmaceutical treatment of Type 2 diabetic patients on insulin signaling and glucose uptake are discussed. The identification and characterization of pathways governing insulin action on glucose metabolism will facilitate the development of strategies to improve insulin sensitivity in an effort to prevent and treat Type 2 diabetes mellitus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号