首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   3篇
  国内免费   14篇
  2023年   6篇
  2022年   5篇
  2021年   7篇
  2020年   7篇
  2019年   5篇
  2018年   7篇
  2017年   7篇
  2016年   4篇
  2015年   4篇
  2014年   4篇
  2013年   7篇
  2012年   6篇
  2011年   1篇
  2010年   4篇
  2009年   10篇
  2008年   8篇
  2007年   4篇
  2006年   5篇
  2005年   4篇
  2004年   6篇
  2003年   6篇
  2002年   6篇
  2001年   1篇
  2000年   1篇
  1999年   5篇
  1998年   6篇
  1996年   3篇
  1992年   1篇
  1991年   2篇
  1984年   3篇
  1976年   1篇
排序方式: 共有146条查询结果,搜索用时 46 毫秒
81.
Herbivores gain access to nutrients stored in plant biomass largely by harnessing the metabolic activities of microbes. Leaf-cutter ants of the genus Atta are a hallmark example; these dominant neotropical herbivores cultivate symbiotic fungus gardens on large quantities of fresh plant forage. As the external digestive system of the ants, fungus gardens facilitate the production and sustenance of millions of workers. Using metagenomic and metaproteomic techniques, we characterize the bacterial diversity and physiological potential of fungus gardens from two species of Atta. Our analysis of over 1.2 Gbp of community metagenomic sequence and three 16S pyrotag libraries reveals that in addition to harboring the dominant fungal crop, these ecosystems contain abundant populations of Enterobacteriaceae, including the genera Enterobacter, Pantoea, Klebsiella, Citrobacter and Escherichia. We show that these bacterial communities possess genes associated with lignocellulose degradation and diverse biosynthetic pathways, suggesting that they play a role in nutrient cycling by converting the nitrogen-poor forage of the ants into B-vitamins, amino acids and other cellular components. Our metaproteomic analysis confirms that bacterial glycosyl hydrolases and proteins with putative biosynthetic functions are produced in both field-collected and laboratory-reared colonies. These results are consistent with the hypothesis that fungus gardens are specialized fungus–bacteria communities that convert plant material into energy for their ant hosts. Together with recent investigations into the microbial symbionts of vertebrates, our work underscores the importance of microbial communities in the ecology and evolution of herbivorous metazoans.  相似文献   
82.
Rapid volumetric growth and extensive invasion into brain parenchyma are hallmarks of malignant neuroepithelial tumors in vivo. Little is known, however, about the mechanical impact of the growing brain tumor on its microenvironment. To better understand the environmental mechanical response, we used multiparticle tracking methods to probe the environment of a dynamically expanding, multicellular brain tumor spheroid that grew for 6 days in a three-dimensional Matrigel-based in vitro assay containing 1.0-microm latex beads. These beads act as reference markers for the gel, allowing us to image the spatial displacement of the tumor environment using high-resolution time-lapse video microscopy. The results show that the volumetrically expanding tumor spheroid pushes the gel outward and that this tumor-generated pressure propagates to a distance greater than the initial radius of the tumor spheroid. Intriguingly, beads near the tips of invasive cells are displaced inward, toward the advancing invasive cells. Furthermore, this localized cell traction correlates with a marked increase in total invasion area over the observation period. This case study presents evidence that an expanding microscopic tumor system exerts both significant mechanical pressure and significant traction on its microenvironment.  相似文献   
83.
Programmed cell death in trypanosomatids and other unicellular organisms   总被引:9,自引:0,他引:9  
In multicellular organisms, cellular growth and development can be controlled by programmed cell death (PCD), which is defined by a sequence of regulated events. However, PCD is thought to have evolved not only to regulate growth and development in multicellular organisms but also to have a functional role in the biology of unicellular organisms. In protozoan parasites and in other unicellular organisms, features of PCD similar to those in multicellular organisms have been reported, suggesting some commonality in the PCD pathway between unicellular and multicellular organisms. However, more extensive studies are needed to fully characterise the PCD pathway and to define the factors that control PCD in the unicellular organisms. The understanding of the PCD pathway in unicellular organisms could delineate the evolutionary origin of this pathway. Further characterisation of the PCD pathway in the unicellular parasites could provide information regarding their pathogenesis, which could be exploited to target new drugs to limit their growth and treat the disease they cause.  相似文献   
84.
The Escherichia coli gene pair mazEF is a regulatable chromosomal toxin-antitoxin module: mazF encodes a stable toxin and mazE encodes for a labile antitoxin that overcomes the lethal effect of MazF. Because MazE is labile, inhibition of mazE expression results in cell death. We studied the effect of mazEF on the development of bacteriophage P1 upon thermoinduction of the prophage P1CM c1ts and upon infection with virulent phage particles (P1 vir ). In several E. coli strains, we showed that the mazEF derivative strains produced significantly more phages than did the parent strain. In addition, upon induction of K38(P1CM c1ts), nearly all of the mazEF mutant cells lysed; in contrast, very few of the parental mazEF + K38 cells underwent lysis. However, most of these cells did not remain viable. Thus, while the mazEF cells die as a result of the lytic action of the phage, most of the mazEF + cells are killed by a different mechanism, apparently through the action of the chromosomal mazEF system itself. Furthermore, the introduction of lysogens into a growing non-lysogenic culture is lethal to mazEF but not for mazEF + cultures. Thus, although mazEF action causes individual cells to die, upon phage growth this is generally beneficial to the bacterial culture because it causes P1 phage exclusion from the bacterial population. These results provide additional support for the view that bacterial cultures may share some of the characteristics of multicellular organisms.Communicated by W. Arber  相似文献   
85.
Degradation of organic pollutants by methane grown microbial consortia   总被引:5,自引:0,他引:5  
Microbial consortia were enriched from various environmental samples with methane as the sole carbon and energy source. Selected consortia that showed a capacity for co-oxidation of naphthalene were screened for their ability to degrade methyl-tert-butyl-ether (MTBE), phthalic acid esters (PAE), benzene, xylene and toluene (BTX). MTBE was not removed within 24 h by any of the consortia examined. One consortium enriched from activated sludge (AAE-A2), degraded PAE, including (butyl-benzyl)phthalate (BBP), and di-(butyl)phthalate (DBP). PAE have not previously been described as substrates for methanotrophic consortia. The apparent Km and Vmax for DBP degradation by AAE-A2 at 20 °C was 3.1 ± 1.2 mg l–1 and 8.7 ± 1.1 mg DBP (g protein × h)–1, respectively. AAE-A2 also showed fast degradation of BTX (230 ± 30 nmol benzene (mg protein × h)–1 at 20 °C). Additionally, AAE-A2 degraded benzene continuously for 2 weeks. In contrast, a pure culture of the methanotroph Methylosinus trichosporium OB3b ceased benzene degradation after only 2 days. Experiments with methane mono-oxygenase inhibitors or competitive substrates suggested that BTX degradation was carried out by methane-oxidizing bacteria in the consortium, whereas the degradation of PAE was carried out by non-methanotrophic bacteria co-existing with methanotrophs. The composition of the consortium (AAE-A2) based on polar lipid fatty acid (PLFA) profiles showed dominance of type II methanotrophs (83–92% of biomass). Phylogeny based on a 16S-rRNA gene clone library revealed that the dominating methanotrophs belonged to Methylosinus/Methylocystis spp. and that members of at least 4 different non-methanotrophic genera were present (Pseudomonas, Flavobacterium, Janthinobacterium and Rubivivax).  相似文献   
86.
Microbial consortia obtained from soil samples of gasoline-polluted sites were individually enriched with pentane, hexane, isooctane and toluene. Cometabolism with methyl tert-butyl ether, (MTBE), gave maximum degradation rates of 49, 12, 32 and 0 mg g(-1)protein h(-1), respectively. MTBE was fully degraded even when pentane was completely depleted with a cometabolic coefficient of 1 mgMTBE mg(-1)pentane. The analysis of 16S rDNA from isolated microorganisms in the pentane-adapted consortia showed that microorganisms could be assigned to Pseudomonas. This is the first work reporting the cometabolic mineralization of MTBE by consortium of this genus.  相似文献   
87.
To obtain a multicellular MCF-7 spheroid model to mimic the three-dimensional (3D) of tumors, the microwell liquid overlay (A) and hanging-drop/agar (B) methods were first compared for their technical parameters. Then a method for embedding spheroids within collagen was optimized. For method A, centrifugation assisted cells form irregular aggregates but not spheroids. For method B, an extended sedimentation period of over 24 h for cell suspensions and increased viscosity of the culture medium using methylcellulose were necessary to harvest a dense and regular cell spheroid. When the number was less than 5000 cells/drop, embedded spheroids showed no tight cores and higher viability than the unembedded. However, above 5000 cells/drop, cellular viability of embedded spheroids was not significantly different from unembedded spheroids and cells invading through the collagen were in a sun-burst pattern with tight cores. Propidium Iodide staining indicated that spheroids had necrotic cores. The doxorubicin cytotoxicity demonstrated that spheroids were less susceptible to DOX than their monolayer cells. A reliable and reproducible method for embedding spheroids using the hanging-drop/agarose method within collagen is described herein. The cell culture model can be used to guide experimental manipulation of 3D cell cultures and to evaluate anticancer drug efficacy.  相似文献   
88.
Biological oxidation rates of CS2 with a mixed microbial culture obtained from a trickling filter were optimal with 3 mM CS2, pH 7, 30°C and SO4 2– below 25 g l–1. Degradation rates were 3.4 mg CS2/gproteinmin and 13.8 mg H2S/gproteinmin. The concentrations of intermediates (H2S, COS and S°) and the product (SO4 2–) of CS2 oxidation were measured. The biological oxidation was due principally to Gram negative bacteria.  相似文献   
89.
The cellular function of the intrinsic prion protein (PrPc) remains largely unknown. In the present study PrPc expression was investigated in multicellular prostate tumor spheroids and was correlated to the intracellular redox state as evaluated using the fluorescent dye 2'7'-dichlorodihydrofluorescein diacetate (H2DCFDA). In small tumor spheroids (diameter 100 +/- 20 microm) reactive oxygen species (ROS) levels were increased as compared with large (diameter 250 +/- 50 microm) spheroids. ROS generation was mediated by the mitochondrial respiratory chain and a NADPH oxidaselike enzyme, because carbonylcyanide-m-chlorophenylhydrazone (CCCP), rotenone, and diphenylene iodonium chloride (DPI) significantly reduced ROS levels. The elevated ROS were correlated to an increased expression of PrPc, Cu/Zn superoxide dismutase (SOD-1), and catalase in small as compared with large spheroids. In large tumor spheroids, PrPc was predominantly expressed in the peripheral cell layers and colocalized with SOD-1 and catalase. Raising intracellular ROS in large tumor spheroids by hydrogen peroxide, menadione, buthionine sulfoximine (BSO), and incubation in glutamine-reduced medium increased PrPc expression. In small spheroids PrPc was downregulated after incubation with the radical scavengers dehydroascorbate (DHA) and vitamin E. Our data indicate that PrPc expression in tumor spheroids is related to the intracellular redox state and may participate in antioxidative defense.  相似文献   
90.
Biodegradation of Oil Tank Bottom Sludge using Microbial Consortia   总被引:1,自引:1,他引:0  
We present a rationale for the selection of a microbial consortia specifically adapted to degrade toxic components of oil refinery tank bottom sludge (OTBS). Sources such as polluted soils, petrochemical waste, sludge from refinery-wastewater plants, and others were used to obtain a collection of eight microorganisms, which were individually tested and characterized to analyze their degradative capabilities on different hydrocarbon families. After initial experiments using mixtures of these strains, we developed a consortium consisting of four microorganisms (three bacteria and one yeast) selected in the basis of their cometabolic effects, emulsification properties, colonization of oil components, and degradative capabilities. Although the specific contribution each of the former parameters makes is not clearly understood, the activity of the four-member consortium had a strong impact not only on linear alkane degradation (100%), but also on the degradation of cycloalkanes (85%), branched alkanes (44%), and aromatic and sulphur–aromatic compounds (31–55%). The effectiveness of this consortium was significantly superior to that obtained by individual strains, commercial inocula or an undefined mixture of culturable and non-culturable microorganisms obtained from OTBS-polluted soil. However, results were similar when another consortium of four microorganisms, previously isolated in the same OTBS-polluted soil, was assayed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号