首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   3篇
  国内免费   14篇
  2023年   6篇
  2022年   5篇
  2021年   7篇
  2020年   7篇
  2019年   5篇
  2018年   7篇
  2017年   7篇
  2016年   4篇
  2015年   4篇
  2014年   4篇
  2013年   7篇
  2012年   6篇
  2011年   1篇
  2010年   4篇
  2009年   10篇
  2008年   8篇
  2007年   4篇
  2006年   5篇
  2005年   4篇
  2004年   6篇
  2003年   6篇
  2002年   6篇
  2001年   1篇
  2000年   1篇
  1999年   5篇
  1998年   6篇
  1996年   3篇
  1992年   1篇
  1991年   2篇
  1984年   3篇
  1976年   1篇
排序方式: 共有146条查询结果,搜索用时 78 毫秒
121.
Microbial consortium is a complex adaptive system with higher‐order dynamic characteristics that are not present by individual members. To accurately predict the social interactions, we formulate a set of unstructured kinetic models to quantitatively capture the dynamic interactions of multiple microbial species. By introducing an interaction coefficient, we analytically derived the steady‐state solutions for the interacting species and the substrate‐depleting profile in the chemostat. We analyzed the stability of the possible coexisting states defined by competition, parasitism, amensalism, commensalism, and cooperation. Our model predicts that only parasitism, commensalism, and cooperation could lead to stable coexisting states. We also determined the optimal social interaction criteria of microbial coculture when sequential metabolic reactions are compartmentalized into two distinct species. Coupled with Luedeking–Piret and Michaelis–Menten equations, accumulation of metabolic intermediates in one species and formation of end‐product in another species could be derived and assessed. We discovered that parasitism consortia disfavor the bioconversion of intermediate to final product; and commensalism consortia could efficiently convert metabolic intermediates to final product and maintain metabolic homeostasis with a broad range of operational conditions (i.e., dilution rates); whereas cooperative consortia leads to highly nonlinear pattern of precursor accumulation and end‐product formation. The underlying dynamics and emergent properties of microbial consortia may provide critical knowledge for us to understand ecological coexisting states, engineer efficient bioconversion process, deliver effective gut therapeutics as well as elucidate probiotic‐pathogen or tumor‐host interactions in general.  相似文献   
122.
张彤  刘盼  王倩  梁泉峰  祁庆生 《生物工程学报》2021,37(10):3520-3534
伴随着环境污染的日益严重,处理"白色污染"成为人们面临的一个棘手难题,而各种合成塑料因为应用广泛且很难降解成为其"主要元凶"。利用自然界存在的或者是进化产生的微生物可降解合成塑料是一种环境友好型的策略。以国家自然科学基金国际(地区)合作和交流(中欧组织间合作研究NSFC-EU)项目"合成塑料降解转化微生物菌群"为基础,总结近年来筛选到的能够降解合成塑料,如聚乙烯(Polyethylene,PE)、聚丙烯(Polypropylene,PP)、聚苯乙烯(Polystyrene,PS)、聚氯乙烯(Polyvinyl chloride,PVC)、聚氨酯(Polyurethane,PUR)、聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)的纯细菌、纯真菌及微生物菌群的研究状况,分析了各种微生物在石油基塑料降解中的作用,讨论了微生物及其降解酶对合成塑料降解研究的优缺点。  相似文献   
123.
Single chambered mediatorless microbial fuel cell (MFC; non-catalyzed electrodes) was operated to evaluate the potential of bioelectricity generation from the treatment of composite waste vegetables (EWV) extract under anaerobic microenvironment using mixed consortia as anodic biocatalyst. The system was operated with designed synthetic wastewater (DSW; 0.98 kg COD/m3-day) during adaptation phase and later shifted to EWV and operated at three substrate load conditions (2.08, 1.39 and 0.70 kg COD/m3-day). Experimental data illustrated the feasibility of bioelectricity generation through the utilization of EWV as substrate in MFC. Higher power output (57.38 mW/m2) was observed especially at lower substrate load. The performance of MFC was characterized based on the polarization behavior, cell potentials, cyclic voltammetric analysis and sustainable resistance. MFC operation also documented to stabilize the waste by effective removal of COD (62.86%), carbohydrates (79.84%) and turbidity (55.12%).  相似文献   
124.
We describe the application of a non-linear single-particle state bosonic condensate equation to simulate multicellular tumor growth by treating it as a coupling of two classical wave equations with real components. With one component representing the amplitude of the cells in their volume growth phase and the other representing the amplitude of the cells in their proliferation or mitosis phase, the two components of the coupled equation feed each other during the time evolution and are coupled together through diffusion and other linear and non-linear terms. The features of quiescent and necrotic cells, which result from poor nutrient diffusion into a tumor, have been found to correspond quite well to experimental data when they are modeled as depending on higher cell density. Classical hallmarks of benign tumor growth, such as the initial rapid growth, followed by a dramatic collapse in the proliferating cell count and a strong re-growth thereafter appear quite encouragingly in the theoretical results. A tool for graphical analysis of the tumor simulation results has been developed to provide morphological information about tumors at various growth stages. The model and the graphical analysis can be extended further to create an effective tool to predict/monitor tumor growth. 1 Screen shot from the graphical analysis tool showing simulation results after ten days: clustering of cells of the tumor (up); cell density profile (down) Dedicated to Professor Dr. Paul von Ragué Schleyer on the occasion of his 75th birthday  相似文献   
125.
Design of a microbial consortium is a newly emerging field that enables researchers to extend the frontiers of biotechnology from a pure culture to mixed cultures. A microbial consortium enables microbes to use a broad range of carbon sources. It provides microbes with robustness in response to environmental stress factors. Microbes in a consortium can perform complex functions that are impossible for a single organism. With advancement of technology, it is now possible to understand microbial interaction mechanism and construct consortia. Microbial consortia can be classified in terms of their construction, modes of interaction, and functions. Here we discuss different trends in the study of microbial functions and interactions, including single-cell genomics (SCG), microfluidics, fluorescent imaging, and membrane separation. Community profile studies using polymerase chain-reaction denaturing gradient gel electrophoresis (PCR-DGGE), amplified ribosomal DNA restriction analysis (ARDRA), and terminal restriction fragment-length polymorphism (T-RFLP) are also reviewed. We also provide a few examples of their possible applications in areas of biopolymers, bioenergy, biochemicals, and bioremediation.  相似文献   
126.
功能菌群耦合黄铁矿浸出软锰矿的研究   总被引:1,自引:0,他引:1  
【目的】将3种不同来源的环境样品混合后接种至含1%黄铁矿和1%软锰矿的培养基中进行富集培养,初步得到有一定浸矿功能的混合微生物菌群。【方法】菌群继续用于黄铁矿和低品位软锰矿共同浸出,设置未接种的体系作为对照。【结果】对浸出过程中菌群结构的变化、pH、锰浸出率和浸出残渣的成分进行分析,结果发现接种过微生物菌群的浸出体系在反应15 d后,锰浸出率达到92.48%,远高于未接菌对照组的40.34%;菌群中Thiomonas sp.所占比例从最初的2%上升到浸出结束时的93%。实验组的pH从最初的4.0下降到2.5;X射线衍射(XRD)分析发现,通过生物作用浸出的残渣中含有黄钾铁矾,说明生物代谢产生了大量的硫酸。【结论】证明微生物在两矿浸出过程中通过促进黄铁矿解离,维持体系低pH等作用加速反应的进行。结果为进一步研究微生物浸矿的作用机制和开发低品位锰矿的生物浸出工艺打下了基础。  相似文献   
127.
128.
The application of artificial microbial consortia for biotechnological production processes is an emerging field in research as it offers great potential for the improvement of established as well as the development of novel processes. In this review, we summarize recent highlights in the usage of various microbial consortia for the production of, for example, platform chemicals, biofuels, or pharmaceutical compounds. It aims to demonstrate the great potential of co-cultures by employing different organisms and interaction mechanisms and exploiting their respective advantages. Bacteria and yeasts often offer a broad spectrum of possible products, fungi enable the utilization of complex lignocellulosic substrates via enzyme secretion and hydrolysis, and microalgae can feature their abilities to fixate CO2 through photosynthesis for other organisms as well as to form lipids as potential fuelstocks. However, the complexity of interactions between microbes require methods for observing population dynamics within the process and modern approaches such as modeling or automation for process development. After shortly discussing these interaction mechanisms, we aim to present a broad variety of successfully established co-culture processes to display the potential of artificial microbial consortia for the production of biotechnological products.  相似文献   
129.
Abstract A screening of twenty-two marine isolates was made to examine their effects on corrosion of carbon steel ASTM A619. In batch cultures, sixteen of the isolates gave a lower corrosion than the control. Aerobic and anaerobic biofilm populations were formed by immersing iron coupons in natural seawater under aerobic and anaerobic conditions. The effects of the biofilms depended on a balance between the presence of oxygen and the type of population. An anaerobic population attached to the surface increased the corrosion rate if immersed in a suspension of Vibrio sp. DW1. The vibrio population probably 'protected' the anaerobic population from oxygen and may have provided nutrients, thereby creating conditions that allowed production of corrosive metabolites close to the metal. In contrast, coupons without a biofilm showed a decrease in the corrosion when immersed in the same vibrio suspension. The protective effect of a dense suspension of bacteria found earlier [5,6] was tested in situ in seawater. Iron coupons were immersed in dialysis bags with a suspension of Vibrio sp. DW1. Coupons immersed in dialysis bags with DW1 showed a lower degree of corrosion than coupons immersed in bags with seawater.  相似文献   
130.
Laboratory microcosms were used to assess the impact of arsenic (As) contamination on agricultural soil bacterial activity focusing free-living nitrogen fixers for three months. Periodically collected microcosm samples were analyzed by RT–qPCR following extraction of total RNA and cDNA preparation for assessing the metabolically active bacterial population. RT–qPCR data showed the gradual increase of 16S rRNA and nifH gene expression, and relative activity of diazotrophs in the enriched soil bacterial consortia under short time As exposure up to 20 ppm and 10 ppm, respectively. A similar trend of these variables was also noticed but up to 1 ppm As when incubating the bulk soil for the same duration. Reduced bacterial activity was noticed at higher concentration of As although in short time exposure. Extending the As exposure time, the bacterial activities in both enriched consortia and bulk soil were decreased. Although, the relative activity of diazotrophs in enriched consortia was increased in presence of 10 ppm As, the same was decreased in bulk soil when exposed to >1 ppm As for long time indicating susceptibility of nitrogen fixer to As contamination in soil. PCA of the data obtained also indicated a negative correlation between As concentrations and diazotrophic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号