首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2817篇
  免费   185篇
  国内免费   46篇
  3048篇
  2024年   11篇
  2023年   149篇
  2022年   109篇
  2021年   147篇
  2020年   211篇
  2019年   343篇
  2018年   234篇
  2017年   252篇
  2016年   210篇
  2015年   84篇
  2014年   149篇
  2013年   356篇
  2012年   59篇
  2011年   102篇
  2010年   49篇
  2009年   78篇
  2008年   100篇
  2007年   71篇
  2006年   63篇
  2005年   54篇
  2004年   48篇
  2003年   38篇
  2002年   29篇
  2001年   19篇
  2000年   12篇
  1999年   8篇
  1998年   17篇
  1997年   10篇
  1996年   8篇
  1995年   7篇
  1994年   8篇
  1993年   6篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
  1950年   1篇
排序方式: 共有3048条查询结果,搜索用时 0 毫秒
91.
A series of bezofuran appended 1,5-benzothiazepine compounds 7a–v was designed, synthesized and evaluated as cholinesterase inhibitors. The biological assay experiments showed that most of the compounds displayed a clearly selective inhibition for butyrylcholinesterase (BChE), while a weak or no effect towards acetylcholinesterase (AChE) was detected. All analogs exhibited varied BChE inhibitory activity with IC50 value ranging between 1.0?±?0.01 and 72?±?2.8?μM when compared with the standard donepezil (IC50, 2.63?±?0.28?μM). Among the synthesized derivatives, compounds 7l, 7m and 7k exhibited the highest BChE inhibition with IC50 values of 1.0, 1.0 and 1.8?μM, respectively. The results from a Lineweaver-Burk plot indicated a mixed-type inhibition for compound 7l with BChE. In addition, docking studies confirmed the results obtained through in vitro experiments and showed that most potent compounds bind to both the catalytic anionic site (CAS) and peripheral anionic site (PAS) of BChE active site. The synthesized compounds were also evaluated for their in vitro antibacterial and antifungal activities. The results indicated that the compounds possessed a broad spectrum of activity against the tested microorganisms and showed high activity against both gram positive and gram negative bacteria and fungi.  相似文献   
92.
Thymol is the main monoterpene phenol present in the essential oils which is used in the food industry as flavoring and preservative agent. In this study, the interaction of thymol with the concentration range of 1 to 6 μM and bovine serum albumin (BSA) at fixed concentration of 1 μM was investigated by fluorescence, UV‐vis, and molecular docking methods under physiological‐like condition. Fluorescence experiments were performed at 5 different temperatures, and the results showed that the fluorescence quenching of BSA by thymol was because of a static quenching mechanism. The obtained binding parameters, K, were in the order of 104 M?1, and the binding number, n, was approximately equal to unity indicating that there is 1 binding site for thymol on BSA. Calculated thermodynamic parameters for enthalpy (ΔH), entropy (ΔS), and Gibb's free energy (ΔG) showed that the reaction was spontaneous and hydrophobic interactions were the main forces in the binding of thymol to BSA. The results of UV‐vis spectroscopy and Arrhenius' theory showed the complex formation in the interaction of thymol and BSA. Negligible conformational changes in BSA by thymol were observed in fluorescence experiments, and the same results were also obtained from UV‐vis studies. Results of molecular docking indicated that the subdomain IA of BSA was the binding site for thymol.  相似文献   
93.
In searchof the potenttherapeutic agent as an α-glucosidase inhibitor, we have synthesized twenty-five analogs (125) of quinoline-based Schiff bases as an inhibitoragainst α-glucosidase enzyme under positive control acarbose (IC50 = 38.45 ± 0.80 µM). From the activity profile it was foundthat analogs 1, 2, 3, 4, 11, 12 and 20with IC50values 12.40 ± 0.40, 9.40 ± 0.30, 14.10 ± 0.40, 6.20 ± 0.30, 14.40 ± 0.40, 7.40 ± 0.20 and 13.20 ± 0.40 µMrespectively showed most potent inhibition among the series even than standard drug acarbose (IC50 = 38.45 ± 0.80 µM). Here in the present study analog 4 (IC50 = 6.20 ± 0.30 µM) was found with many folds better α-glucosidase inhibitory activity than the reference drug. Eight analogs like 5, 7, 8, 16, 17, 22, 24 and 25 among the whole series displayed less than 50% inhibition. The substituents effects on phenyl ring thereby superficially established through SAR study. Binding interactions of analogs and the active site of ligands proteins were confirmed through molecular docking study. Spectroscopic techniques like 1H NMR, 13C NMR and ESIMS were used for characterization.  相似文献   
94.
Fipronil is a broad‐spectrum pesticide widely used in agriculture, horticulture, and forestry. Because fipronil can cause a variety of toxic effects in animals and humans, its use is authorized as a pesticide in veterinary medicinal products for pets, but not for the treatment of livestock animals whose products are intended for consumption. Recently, however, the presence of fipronil residues has been detected in the eggs and meat of layer hens from farms located in different European countries. Given the relevance of fipronil toxicity for human health, it is important to gain information concerning its fate in the human body, including its binding mode to human serum albumin (HSA), the most abundant protein in plasma. Here, the inhibition of heme‐Fe(III) binding to the fatty acid site 1 (FA1) of HSA by fipronil is reported. Docking simulations support functional data, indicating that the FA1 site is the preferential cleft for fipronil recognition by HSA. The affinity of fipronil for HSA (Kf = 1.9 × 10?6 M, at pH 7.3, and 20.0°C) may be relevant in vivo. Indeed, HSA could play a pivotal role in fipronil transport and scavenging, thus reducing the pesticide‐free plasmatic levels, with consequent reduced systemic toxicity. In turn, fipronil binding to the FA1 site of HSA could impair the recognition of endogenous and exogenous molecules.  相似文献   
95.
This study describes the enantioseparation of three chiral amines as naphthaldimine derivatives, using normal phase HPLC with amylose and cellulose tris(3,5-dimethylphenylcarbamate) chiral stationary phases (CSPs). Three chiral amines were derivatized using three structurally similar naphthaldehyde derivatizing agents, and the enantioselectivity of the CSPs toward the derivatives was examined. The degree of enantioseparation and resolution was affected by the amylose or cellulose-derived CSPs and aromatic moieties as well as a kind of chiral amine. Especially, efficient enantiomer separation was observed for 2-hydroxynapthaldimine derivatives on cellulose-derived CSPs. Molecular docking studies of three naphthaldimine derivatives of leucinol on cellulose tris(3,5-dimethylphenylcarbamate) were performed to estimate the binding energies and conformations of the CSP–analyte complexes. The obtained binding energies were in good agreement with the experimentally determined enantioseparation and elution order.  相似文献   
96.
In our present study, binding between an important anti renal cancer drug temsirolimus and human transferrin (hTF) was investigated employing spectroscopic and molecular docking approach. In the presence of temsirolimus, hyper chromaticity is observed in hTF in UV spectroscopy suggestive of complex formation between hTF and temsirolimus. Fluorescence spectroscopy revealed the occurrence of quenching in hTF in the presence of temsirolimus implying complex formation taking place between hTF and temsirolimus. Further, the mode of interaction between hTF and temsirolimus was revealed to be static by fluorescence quenching analysis at 3 different temperatures. Binding constant values obtained employing fluorescence spectroscopy depicts strong interaction between hTF and temsirolimus; temsirolimus binds to hTF at 298 K with a binding constant of .32 × 104 M?1 implying the strength of this interaction. The negative Gibbs free energy obtained through quenching experiments is evident of the fact that the binding is spontaneous. CD spectra of hTF also showed a downward shift in the presence of temsirolimus as compared with free hTF implying complex formation between hTF and temsirolimus. Molecular docking was performed with a view to find out which residues are key players in this interaction. The importance of our study stems from the fact it will provide an insight into binding pattern of commonly administered renal cancer drug with an important protein that plays a pivotal role in many physiological processes.  相似文献   
97.
This study was designed to examine the interaction of methacyline (METC) with human serum albumin (HSA) by multispectroscopy and a molecular modeling method under simulative physiological conditions. The quenching mechanism was suggested to be static quenching based on fluorescence and ultraviolet–visible (UV–Vis) spectroscopy. According to the Vant' Hoff equation, the values of enthalpy (?H) and entropy change (?S) were calculated to be ?95.29 kJ/mol and ?218.13 J/mol/K, indicating that the main driving force of the interaction between HSA and METC were hydrogen bonds and van der Waals's forces. By performing displacement measurements, the specific binding of METC in the vicinity of Sudlow's site I of HSA was clarified. An apparent distance of 3.05 nm between Trp214 and METC was obtained via the fluorescence resonance energy transfer (FRET) method. Furthermore, the binding details between METC and HSA were further confirmed by molecular docking studies, which revealed that METC was bound at subdomain IIA through multiple interactions, such as hydrophobic effect, polar forces, hydrogen bonding, etc. The results of three‐dimensional fluorescence and Fourier transform infrared (FTIR) spectroscopy showed that METC caused conformational and some microenvironmental changes in HSA and reduced the α‐helix significantly in the range of 52.3?40.4% in HSA secondary structure. Moreover, the coexistence of metal ions such as Ca2+, Al3+, Fe3+, Zn2+, Cu2+, Cr3+ and Cd2+ can decrease the binding constants of METC–HSA. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
98.
High-throughput docking is a computational tool frequently used to discover small-molecule inhibitors of enzymes or receptors of known three-dimensional structure. Because of the large number of molecules in chemical libraries, automatic procedures to prune multimillion compound collections are useful for high-throughput docking and necessary for in vitro screening. Here, we propose an anchor-based library tailoring approach (termed ALTA) to focus a chemical library by docking and prioritizing molecular fragments according to their binding energy which includes continuum electrostatics solvation. In principle, ALTA does not require prior knowledge of known inhibitors, but receptor-based pharmacophore information (hydrogen bonds with the hinge region) is additionally used here to identify molecules with optimal anchor fragments for the ATP-binding site of the EphB4 receptor tyrosine kinase. The 21,418 molecules of the focused library (from an initial collection of about 730,000) are docked into EphB4 and ranked by force-field-based energy including electrostatic solvation. Among the 43 compounds tested in vitro, eight molecules originating from two different anchors show low-micromolar activity in a fluorescence-based enzymatic assay. Four of them are active in a cell-based assay and are potential anti-angiogenic compounds.  相似文献   
99.
A novel series of 3-pyrrolo[b]cyclohexylene-2-dihydroindolinone derivatives targeting VEGFR-2, PDGFR-β and c-Kit kinases were designed and synthesized. The molecular design was based on the SAR features of indolin-2-ones as kinase inhibitors. SAR study of the series allowed us to identify compounds possessing more potent inhibitory activities against the three kinases than sunitinb with IC50 values in the low nanomolar range in vitro. Additionally, some compounds also showed favorable antiproliferative activities against a panel of cancer cell lines (BXPC-3, T24, BGC, HEPG2 and HT29).  相似文献   
100.
The interaction between the food colorant canthaxanthin (CA) and human serum albumin (HSA) in aqueous solution was explored by using fluorescence spectroscopy, three‐dimensional fluorescence spectra, synchronous fluorescence spectra, UV–vis absorbance spectroscopy, circular dichroism (CD) spectra and molecular docking methods. The thermodynamic parameters calculated from fluorescence spectra data showed that CA could result in the HSA fluorescence quenching. From the KSV change with the temperature dependence, it was concluded that HSA fluorescence quenching triggered by CA is the static quenching and the number of binding sites is one. Furthermore, the secondary structure of HSA was changed with the addition of CA based on the results of synchronous fluorescence, three‐dimensional fluorescence and CD spectra. Hydrogen bonds and van der Waals forces played key roles in the binding process of CA with HSA, which can be obtained from negative standard enthalpy (ΔH) and negative standard entropy (ΔS). Furthermore, the conclusions were certified by molecular docking studies and the binding mode was further analyzed with Discovery Studio. These conclusions can highlight the potential of the interaction mechanism of food additives and HSA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号