首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2816篇
  免费   186篇
  国内免费   46篇
  3048篇
  2024年   11篇
  2023年   149篇
  2022年   109篇
  2021年   147篇
  2020年   211篇
  2019年   343篇
  2018年   234篇
  2017年   252篇
  2016年   210篇
  2015年   84篇
  2014年   149篇
  2013年   356篇
  2012年   59篇
  2011年   102篇
  2010年   49篇
  2009年   78篇
  2008年   100篇
  2007年   71篇
  2006年   63篇
  2005年   54篇
  2004年   48篇
  2003年   38篇
  2002年   29篇
  2001年   19篇
  2000年   12篇
  1999年   8篇
  1998年   17篇
  1997年   10篇
  1996年   8篇
  1995年   7篇
  1994年   8篇
  1993年   6篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
  1950年   1篇
排序方式: 共有3048条查询结果,搜索用时 0 毫秒
81.
The synthesis and activity of a new series of non-steroidal inhibitors of 17β-hydroxysteroid dehydrogenase that are based on a 1,5-benzodiazepine scaffold are presented. Their inhibitory potential was screened against 17β-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17β-HSDcl), a model enzyme of the short-chain dehydrogenase/reductase superfamily. Some of these compounds are potent inhibitors of 17β-HSDcl activity, with IC50 values in the low micromolar range and represent promising lead compounds that should be further developed and investigated as inhibitors of human 17β-HSD isoforms, which are the enzymes associated with the development of many hormone-dependent and neuronal diseases.  相似文献   
82.
In continuation of our previous study on the urease inhibition by a number of chalcones, 2,3-dihydro-1,5-benzothiazepines and 2,3,4,5-tetrahydro-1,5-benzothiazepines, FlexX docking has been exploited to get a deeper insight into the mechanism of their inhibitory action. A comparison of the IC50 values of the active compounds reveals that, of the three classes of compounds studied, 2,3-dihydro-1,5-benzothiazepines were the most potent urease inhibitors. An in silico examination of these compounds showed that the activity is related to the interaction of ligand with the nickel metallocentre, its interaction with two amino acid residues, Asp224 and Cys322, in addition to the orientation of rings A and B in the catalytic core of the enzyme. The most active compound 2,3-dihydro-1,5-benzothiazepine (4) anchor tightly through a network of interactions with Ni701 and Ni702. This includes a number of hydrogen bonds and hydrophobic contacts with the amino acid residues in its vicinity. For their reduced analogs, the difference in the activity of different diastereomers has been observed to be configuration-dependent. This may be ascribed mainly to the difference in the orientation of ring B of the two stereoisomers and the extent of their interaction with Asp224 and Cys322 present in the catalytic core of the enzyme.  相似文献   
83.
Abstract

In this work, we have synthesized a few novel mononuclear complexes of Cu(II), Co(II), Ni(II) and Zn(II) using a pyrazolone-derived Schiff base ligand. They were characterized by spectroscopic and analytical methods. The elemental analyses, UV-Vis, magnetic moment values and molar conductance of the complexes reveal that the complexes adopt an octahedral arrangement around the central metal ions. The interaction of complexes with CT-DNA was studied by absorption spectral titration and viscosity measurements. The observed data show that the complexes bind with CT-DNA via an intercalation mode. Efficient pUC18 DNA cleavage ability of the synthesized compounds was explored by gel electrophoresis. The antimicrobial activity of these compounds against a set of bacterial and fungal strains reveals that the complexes exhibit better activity than the free ligand. Moreover, all the complexes were evaluated against two cancer (HeLa and HepG2) and one normal (NHDF) cell lines. The data were compared with cisplatin. Anti–inflammatory activity has been experimentally validated which proves that theoretical predictions concur with the experimental results. In addition, molecular docking studies have been performed to consider the nature of binding mode and binding affinity of these compounds with DNA (1BNA) and protein (3hb5). These studies reveal that the mode of binding is intercalation and the complexes have higher binding energy scores than the free ligand.  相似文献   
84.
RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA–small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA–ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a “meta-predictor” leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at http://ligandrna.genesilico.pl.  相似文献   
85.
《MABS-AUSTIN》2013,5(2):533-546
The humanized monoclonal antibody H27K15 specifically targets human CD115, a type III tyrosine kinase receptor involved in multiple cancers and inflammatory diseases. Binding of H27K15 to hCD115 expressing cells inhibits the functional effect of colony-stimulating factor-1 (CSF-1), in a non-competitive manner. Both homology modeling and docking programs were used here to model the human CD115 extracellular domains, the H27K15 variable region and their interaction. The resulting predicted H27K15 epitope includes mainly the D1 domain in the N-terminal extracellular region of CD115 and some residues of the D2 domain. Sequence alignment with the non-binding murine CD115, enzyme-linked immunosorbent assay, nuclear magnetic resonance spectroscopy and affinity measurements by quartz crystal microbalance revealed critical residues of this epitope that are essential for H27K15 binding. A combination of computational simulations and biochemical experiments led to the design of a chimeric CD115 carrying the human epitope of H27K15 in a murine CD115 backbone that is able to bind both H27K15 as well as the murine ligands CSF-1 and IL-34. These results provide new possibilities to minutely study the functional effects of H27K15 in a transgenic mouse that would express this chimeric molecule.  相似文献   
86.
《Autophagy》2013,9(11):2021-2035
Autophagy has been implicated in the progression and chemoresistance of various cancers. In this study, we have shown that osteosarcoma Saos-2 cells lacking ATG4B, a cysteine proteinase that activates LC3B, are defective in autophagy and fail to form tumors in mouse models. By combining in silico docking with in vitro and cell-based assays, we identified small compounds that suppressed starvation-induced protein degradation, LC3B lipidation, and formation of autophagic vacuoles. NSC185058 effectively inhibited ATG4B activity in vitro and in cells while having no effect on MTOR and PtdIns3K activities. In addition, this ATG4B antagonist had a negative impact on the development of Saos-2 osteosarcoma tumors in vivo. We concluded that tumor suppression was due to a reduction in ATG4B activity, since we found autophagy suppressed within treated tumors and the compound had no effects on oncogenic protein kinases. Our findings demonstrate that ATG4B is a suitable anti-autophagy target and a promising therapeutic target to treat osteosarcoma.  相似文献   
87.
The chromatin modification is regulated by the histone acetyltransferase (HAT) and histone deacetyltransferase (HDAC) enzymes; abnormal function of these enzymes leads to several malignant diseases. The inhibition of these enzymes using natural ligand molecules is an emerging technique to cure these diseases. The in vitro analysis of natural molecules, venenatine, spinosine, palmatine and taxodione are giving the best inhibition rate against p300 HAT enzyme. However, the detailed understanding of binding and the stability of these molecules with p300 HAT is not yet known. The aim of the present study is focused to determine the binding strength of the molecules from molecular dynamics simulation analysis. The docking analysis confirms that, the venenatine (−6.97 kcal/mol - conformer 8), spinosine (−6.52 kcal/mol conformer −10), palmatine (−5.72 kcal/mol conformer-3) and taxodione (−4.99 kcal/mol conformer-4) molecules form strong hydrogen bonding interactions with the key amino acid residues (Arg1410, Thr1411 and Trp1466) present in the active site of p300. In the molecular dynamics (MD) simulation, the spinosine retain these key interactions with the active site amino acid residues (Arg1410, Thr1411, and Trp1466) than venenatine and are stable throughout the simulation. The RMSD value of spinosine (0.5 to 1.3 Å) and venenatine (0.3 to 1.3 Å) are almost equal during the MD simulation. However, during the MD simulation, the intermolecular interaction between venenatine and the active site amino acid residues (Arg1410, Thr1411, and Trp1466) decreased on comparing with the spinosine-p300 interaction. The binding free energy of the spinosine (−15.30 kcal/mol) is relatively higher than the venenatine (−11.8 kcal/mol); this increment is attributed to the strong hydrogen bonding interactions of spinosine molecule with the active site amino acid residues of p300.  相似文献   
88.
Abstract

Nipah Virus (NiV) is a newly emergent paramyxovirus that has caused various outbreaks in Asian countries. Despite its acute pathogenicity and lack of approved therapeutics for human use, there is an urgent need to determine inhibitors against NiV. Hence, this work includes prospection of potential entry inhibitors by implementing an integrative structure- and network-based drug discovery approach. FDA-approved drugs were screened against attachment glycoprotein (NiV-G, PDB: 2VSM), one of the prime targets to inhibit viral entry, using a molecular docking approach that was benchmarked both on CCDC/ASTEX and known NIV-G inhibitor set. The predicted small molecules were prioritized on the basis of topological analysis of the chemical-protein interaction network, which was inferred by integrating the drug-target network, NiV-human interaction network, and human protein-protein interaction network. A total of 17 drugs were predicted to be NiV-G inhibitors using molecular docking studies that were further prioritized to 3 novel leads???Nilotinib, Deslanoside and Acetyldigitoxin???on the basis of topological analysis of inferred chemical-protein interaction network. While Deslanoside and Acetyldigitoxin belong to an already known class of anti-NiV inhibitors, Nilotinib belongs to Benzenoids chemical class that has not been reported hitherto for developing anti-NiV inhibitors. These identified drugs are expected to be successful in further experimental evaluation and therefore could be used for anti-Nipah drug discovery. Apart, we also obtained various insights into the underlying chemical-protein interaction network, based on which several important network nodes were predicted. The applicability of our proposed approach was also demonstrated by prospecting for anti-NiV phytochemicals on an independent dataset.

Communicated by Ramaswamy H. Sarma  相似文献   
89.
We participated in CARPI rounds 38-45 both as a server predictor and a human predictor. These CAPRI rounds provided excellent opportunities for testing prediction methods for three classes of protein interactions, that is, protein-protein, protein-peptide, and protein-oligosaccharide interactions. Both template-based methods (GalaxyTBM for monomer protein, GalaxyHomomer for homo-oligomer protein, GalaxyPepDock for protein-peptide complex) and ab initio docking methods (GalaxyTongDock and GalaxyPPDock for protein oligomer, GalaxyPepDock-ab-initio for protein-peptide complex, GalaxyDock2 and Galaxy7TM for protein-oligosaccharide complex) have been tested. Template-based methods depend heavily on the availability of proper templates and template-target similarity, and template-target difference is responsible for inaccuracy of template-based models. Inaccurate template-based models could be improved by our structure refinement and loop modeling methods based on physics-based energy optimization (GalaxyRefineComplex and GalaxyLoop) for several CAPRI targets. Current ab initio docking methods require accurate protein structures as input. Small conformational changes from input structure could be accounted for by our docking methods, producing one of the best models for several CAPRI targets. However, predicting large conformational changes involving protein backbone is still challenging, and full exploration of physics-based methods for such problems is still to come.  相似文献   
90.
Abstract

Carboxypeptidase A (EC.3.4.17.1) is a zinc-containing proteolytic enzyme that removes the C-terminal amino acid from a peptide chain with the free carboxylate-terminal. In this study, the effect of spermine interaction on the structure and thermal stability of Carboxypeptidase A was investigated by ultraviolet???visible spectroscopy, fluorescence spectroscopy, circular dichroism, Kinetic measurement, molecular docking and simulation studies have also been followed at the pH of 7.5. The transition temperature of Carboxypeptidase A, as a criterion of protein thermal stability, in the presence of spermine was enhanced by increasing the concentration of spermine. The results of fluorescence intensity changes, at two temperatures of 308 and 318?K, also suggested that spermine had a great ability to quench the fluorescence of Carboxypeptidase A through the static quenching procedure. The thermodynamic parameters changes, including standard Gibbs free-energy, entropy and enthalpy, showed that the binding of spermine to Carboxypeptidase A was spontaneous and the hydrogen bonding and van der Waals interactions played a major role in stabilizing the Carboxypeptidase A–spermine complex. The changes in the content of the α-helix and the β-sheet of the Carboxypeptidase A with binding to spermine were shown by the CD spectra method. Further, kinetic studies revealed that by increasing concentration of spermine, the activity of Carboxypeptidase A was enhanced. Also, the docking study revealed that the hydrogen bonding and van der Waals interactions played a major role in stabilizing the Carboxypeptidase A–spermine complex. As a result, spermine could be considered as an activator and a stabilizer for Carboxypeptidase A.

Communicated by Ramaswamy H. Sarma  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号