首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1029篇
  免费   234篇
  国内免费   26篇
  1289篇
  2024年   12篇
  2023年   13篇
  2022年   18篇
  2021年   16篇
  2020年   54篇
  2019年   41篇
  2018年   66篇
  2017年   60篇
  2016年   54篇
  2015年   64篇
  2014年   70篇
  2013年   116篇
  2012年   50篇
  2011年   97篇
  2010年   58篇
  2009年   84篇
  2008年   49篇
  2007年   52篇
  2006年   49篇
  2005年   41篇
  2004年   33篇
  2003年   22篇
  2002年   21篇
  2001年   22篇
  2000年   17篇
  1999年   17篇
  1998年   13篇
  1997年   6篇
  1996年   1篇
  1995年   12篇
  1994年   4篇
  1993年   7篇
  1992年   6篇
  1991年   9篇
  1990年   4篇
  1989年   3篇
  1986年   1篇
  1985年   6篇
  1984年   3篇
  1983年   7篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有1289条查询结果,搜索用时 15 毫秒
41.
UV irradiation of poly(organosilanylene-2,5-diethynylenesiloles) in benzene with an excess of Fe(CO)5 led to the formation of Fe(CO)3-coordinated silole units in the polymer backbone. The Fe(CO)3-coordinated polymers exhibited suppressed π-conjugation, relative to the parent non-coordinated polymers. Hole-transporting properties of poly(organosilanylene-2,5-diethynylenesiloles) were examined by the performance of EL devices containing the polymer layer as the hole-transport and Alq3 layer as the electron-transporting emitter.  相似文献   
42.
While polymer acceptors are promising fullerene alternatives in the fabrication of efficient bulk heterojunction (BHJ) solar cells, the range of efficient material systems relevant to the “all‐polymer” BHJ concept remains narrow, and currently limits the perspectives to meet the 10% efficiency threshold in all‐polymer solar cells. This report examines two polymer acceptor analogs composed of thieno[3,4‐c ]pyrrole‐4,6‐dione (TPD) and 3,4‐difluorothiophene ([2F]T) motifs, and their BHJ solar cell performance pattern with a low‐bandgap polymer donor commonly used with fullerenes (PBDT‐TS1; taken as a model system). In this material set, the introduction of a third electron‐deficient motif, namely 2,1,3‐benzothiadiazole (BT), is shown to (i) significantly narrow the optical gap (E opt) of the corresponding polymer (by ≈0.2 eV) and (ii) improve the electron mobility of the polymer by over two orders of magnitude in BHJ solar cells. In turn, the narrow‐gap P2TPDBT[2F]T analog (E opt = 1.7 eV) used as fullerene alternative yields high open‐circuit voltages (V OC) of ≈1.0 V, notable short‐circuit current values (J SC) of ≈11.0 mA cm−2, and power conversion efficiencies (PCEs) nearing 5% in all‐polymer BHJ solar cells. P2TPDBT[2F]T paves the way to a new, promising class of polymer acceptor candidates.  相似文献   
43.
The hydrothermal synthesis, single crystal X-ray structure and magnetic properties of a two-dimensional (2-D) coordination polymer, [Ni4(C6(COO)6)(OH)2(H2O)6] (1), is described. Complex 1 consists of dimer motifs of pseudo octahedral NiO6 linked through μ3-OH to generate one-dimensional (1-D) chains which are further bridged by the mellitate ligands to form non interpenetrated undulating sheet structure. The sheets are further connected by hydrogen bonding interaction to yield a three-dimensional (3-D) structure. The temperature dependence of magnetic susceptibilities revealed the presence of antiferromagnetic interaction between nickel centers.  相似文献   
44.
《Biophysical journal》2022,121(11):2127-2134
Measuring the mechanical properties of single-stranded DNA (ssDNA) is a complex challenge that has been addressed lately by different methods. We measured the persistence length of ring ssDNA using a combination of a special DNA origami structure, a self-avoiding ring polymer simulation model, and nonparametric estimation statistics. The method overcomes the complexities set forth by previously used methods. We designed the DNA origami nano structures and measured the ring ssDNA polymer conformations using atomic force microscopy. We then calculated their radius of gyration, which was used as a fitting parameter for finding the persistence length. As there is no simple formulation for the radius of gyration distribution, we developed a simulation program consisting of a self-avoiding ring polymer to fit the persistence length to the experimental data. ssDNA naturally forms stem-loops, which should be taken into account in fitting a model to the experimental measurement. To overcome that hurdle, we found the possible loops using minimal energy considerations and used them in our fitting procedure of the persistence length. Due to the statistical nature of the loops formation, we calculated the persistence length for different percentages of loops that are formed. In the range of 25–75% loop formation, we found the persistence length to be 1.9–4.4 nm, and for 50% loop formation we get a persistence length of 2.83 ± 0.63 nm. This estimation narrows the previously known persistence length and provides tools for finding the conformations of ssDNA.  相似文献   
45.
The introduction of oligomeric polystyrene (PS) side chains into the conjugated backbone is proven to enhance the processability and electronic properties of semiconducting polymers. Here, two series of donor and acceptor polymers are prepared with different molar percentages of PS side chains to elucidate the effect of their substitution arrangement on the all‐polymer solar cell performance. The observed device performance is lower when the PS side chains are substituted on the donor polymer and higher when on the acceptor polymer, indicating a clear arrangement effect of the PS side chain. The incorporation of PS side chains to the acceptor polymer contributes to the decrease in phase separation domain size in the blend films. However, the reduced domain size was still an order of magnitude larger than the typical exciton diffusion length. A detailed morphological study together with the estimation of solubility parameter of the pristine PS, donor, and acceptor polymers reveals that the relative value of solubility parameter of each component dominantly contributes to the purity of the phase separated domain, which strongly impacts the amount of generated photocurrent and overall solar cell performance. This study provides an understanding of the design strategies to improve the all‐polymer solar cells.  相似文献   
46.
HBP-NH2 grafted cotton fiber: Preparation and salt-free dyeing properties   总被引:1,自引:1,他引:1  
In order to achieve salt-free dyeing on cotton fiber with reactive dyes, an amino-terminated hyperbranched polymer (HBP-NH2) grafted cotton fiber (HGCF) was prepared by the oxidation of cotton fiber with sodium periodate in water and subsequent grafted with an aqueous solution of HBP-NH2. Fourier transform infrared spectrophotometry (FTIR) of the HGCF indicated that all aldehyde groups of the oxidized cotton fiber have reacted with amino groups of the HBP-NH2. As a result, the HGCF fabrics prepared under the optimum conditions displayed markedly enhanced colour strength when dyed with reactive dyes using salt-free dyeing. The washing fastness, rubbing fastness and levelling properties of the dyed HGCF fabrics were also good compared with those obtained by conventional dyeing. The zeta-potential of the HGCF in liquid phase was tested and found to be positive at pHs lower than 6.5. The dyeing behaviour of Reactive Brilliant Yellow A-4GLN on the HGCF was found to follow a Langmuir-type adsorption curve.  相似文献   
47.
磁性氧化铁纳米粒子因具有尺寸小、低毒性和超顺磁性等特点,已经引起了生物化工、医药工业领域的广泛关注。生物可降解高分子材料是生物医用高分子研究中最活跃的领域之一,已广泛用于外科手术缝合线,植入体材料及药物释放载体等。将Fe3O4和生物可降解高分子材料进行复合,可以扩大两者的应用范围,达到理想的治疗效果,并有望开创临床治疗的新时代。本文介绍了磁性四氧化三铁粒子的化学制备方法,包括共沉淀法、溶胶-凝胶法、微乳液法,并对各种方法的优缺点进行了比较;重点阐述了磁性壳聚糖,磁性聚乳酸,磁性PEG,磁性PCL复合材料的制备,及它们在酶的固定化、磁靶向药物及基因载体等医学领域的应用,显示了Fe3O4/生物可降解复合材料在医学领域的广阔应用前景;最后对复合材料走向临床应用所面临的问题及发展前景进行了讨论。  相似文献   
48.
Organic solar cells based on two benzodithiophene‐based polymers (PTB7 and PTB7‐Th) processed at square centimeter‐size under inert atmosphere and ambient air, respectively, are investigated. It is demonstrated that the performance of solar cells processed under inert atmosphere is not limited by the upscaling of photoactive layer and the interfacial layers. Thorough morphological and electrical characterizations of optimized layers and corresponding devices reveal that performance losses due to area enlargement are only caused by the sheet resistance of the transparent electrode reducing the efficiency from 9.3% of 7.8% for PTB7‐Th in the condition that both photoactive layer and the interfacial layers are of high layer quality. Air processing of photoactive layer and the interfacial layers into centimeter‐sized solar cells lead to additional, but only slight, losses (<10%) in all photovoltaic parameters, which can be addressed to changes in the electronic properties of both active layer and ZnO layers rather than changes in layer morphology. The demonstrated compatibility of polymer solar cells using solution‐processed photoactive layer and interfacial layers with large area indicates that the introduction of a standard active area of 1 cm² for measuring efficiency of organic record solar cells is feasible. However electric standards for indium tin oxides (ITO) or alternative transparent electrodes need to be developed so that performance of new photovoltaic materials can be compared at square centimeter‐size.  相似文献   
49.
Photoinduced charge generation (PCG) dynamics are notoriously difficult to correlate with specific molecular properties in device relevant polymer:fullerene organic photovoltaic blend films due to the highly complex nature of the solid state blend morphology. Here, this study uses six judiciously selected trifluoromethylfullerenes blended with the prototypical polymer poly(3‐hexylthiophene) and measure the PCG dynamics in 50 fs–500 ns time scales with time‐resolved microwave conductivity and femtosecond transient absorption spectroscopy. The isomeric purity and thorough chemical characterization of the fullerenes used in this study allow for a detailed correlation between molecular properties, driving force, local intermolecular electronic coupling and, ultimately, the efficiency of PCG yield. The findings show that the molecular design of the fullerene not only determines inter‐fullerene electronic coupling, but also influences the decay dynamics of free holes in the donor phase even when the polymer microstructure remains unchanged.  相似文献   
50.
The room temperature (RT) processability of the photoactive layers in polymer solar cells (PSCs) from halogen‐free solvent along with their highly reproducible power conversion efficiencies (PCEs) and intrinsic thickness tolerance are extremely desirable for the large‐area roll‐to‐roll (R2R) production. However, most of the photoactive materials in PSCs require elevated processing temperatures due to their strong aggregation, which are unfavorable for the industrial R2R manufacturing of PSCs. These limiting factors for the commercialization of PSCs are alleviated by synthesizing random terpolymers with components of (2‐decyltetradecyl)thiophen‐2‐yl)naphtho[1,2‐c:5,6‐c′]bis[1,2,5]thiadiazole and bithiophene substituted with methyl thiophene‐3‐carboxylate (MTC). In contrast to the temperature‐dependent PNTz4T polymer, the resulting random terpolymers (PNTz4T‐MTC) show better solubility, slightly reduced crystallinity and aggregation, and weaker intermolecular interaction, thus enabling PNTz4T‐MTC to be processed at RT from a halogen‐free solvent. Particularly, the PNTz4T‐5MTC‐based photoactive layer exhibits an excellent PCE of 9.66%, which is among the highest reported PCEs for RT and ecofriendly halogen‐free solvent processed fullerene‐based PSCs, and a thickness tolerance with a PCE exceeding 8% from 100 to 520 nm. Finally, large‐area modules fabricated with the PNTz4T and PNTz4T‐5MTC polymer have shown 4.29% and 6.61% PCE respectively, with an area as high as 54.45 cm2 in air.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号