首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   674篇
  免费   23篇
  国内免费   2篇
  2023年   3篇
  2022年   1篇
  2021年   1篇
  2020年   10篇
  2019年   8篇
  2018年   15篇
  2017年   12篇
  2016年   18篇
  2015年   53篇
  2014年   79篇
  2013年   44篇
  2012年   40篇
  2011年   55篇
  2010年   62篇
  2009年   23篇
  2008年   20篇
  2007年   31篇
  2006年   24篇
  2005年   26篇
  2004年   16篇
  2003年   15篇
  2002年   13篇
  2001年   11篇
  2000年   14篇
  1999年   11篇
  1998年   8篇
  1997年   12篇
  1996年   11篇
  1995年   10篇
  1994年   4篇
  1993年   5篇
  1992年   8篇
  1991年   4篇
  1990年   5篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1974年   1篇
排序方式: 共有699条查询结果,搜索用时 15 毫秒
81.
Two-pore domain K+ channels (K2P) mediate background K+ conductance and play a key role in a variety of cellular functions. Among the 15 mammalian K2P isoforms, TWIK-1, TASK-1, and TASK-3 K+ channels are sensitive to extracellular acidification. Lowered or acidic extracellular pH (pHo) strongly inhibits outward currents through these K2P channels. However, the mechanism of how low pHo affects these acid-sensitive K2P channels is not well understood. Here we show that in Na+-based bath solutions with physiological K+ gradients, lowered pHo largely shifts the reversal potential of TWIK-1, TASK-1, and TASK-3 K+ channels, which are heterologously expressed in Chinese hamster ovary cells, into the depolarizing direction and significantly increases their Na+ to K+ relative permeability. Low pHo-induced inhibitions in these acid-sensitive K2P channels are more profound in Na+-based bath solutions than in channel-impermeable N-methyl-d-glucamine-based bath solutions, consistent with increases in the Na+ to K+ relative permeability and decreases in electrochemical driving forces of outward K+ currents of the channels. These findings indicate that TWIK-1, TASK-1, and TASK-3 K+ channels change ion selectivity in response to lowered pHo, provide insights on the understanding of how extracellular acidification modulates acid-sensitive K2P channels, and imply that these acid-sensitive K2P channels may regulate cellular function with dynamic changes in their ion selectivity.  相似文献   
82.
We present an approach for providing quantitative insight into the production‐ecological sustainability of biofuel feedstock production systems. The approach is based on a simple crop‐soil model and was used for assessing feedstock from current and improved production systems of cassava for bioethanol. Assessments were performed for a study area in Mozambique, a country considered promising for biomass production. Our focus is on the potential role of smallholders in the production of feedstock for biofuels. We take cassava as the crop for this purpose and compare it with feedstock production on plantations using sugarcane, sweet sorghum and cassava as benchmarks. Production‐ecological sustainability was defined by seven indicators related to resource‐use efficiency, soil quality, net energy production and greenhouse gas (GHG) emissions. Results indicate that of the assessed systems, sugarcane performed better than cassava, although it requires substantial water for irrigation. Targeted use of nutrient inputs improved sustainability of smallholder cassava. Cassava production systems on more fertile soils were more sustainable than those on less fertile soils; the latter required more external inputs for achieving the same output, affecting most indicators negatively and reducing the feasibility for smallholders. Cassava and sweet sorghum performed similarly. Cassava production requires much more labour per hectare than production of sugarcane or sweet sorghum. Production of bioethanol feedstock on cultivated lands was more sustainable and had potential for carbon sequestration, avoiding GHG emissions from clearing natural vegetation if new land is opened.  相似文献   
83.
Pannexin1 is a prime candidate to represent an ATP release channel. The pannexin1 channel can be activated by extracellular ATP through purinergic receptors P2X7 or P2Y. Recent studies have shown that the Pannexin1 channel is inhibited by its own permeant ion, ATP, and also by P2X7 receptor agonists and antagonists. However, the dose dependence of this inhibition indicated that significant inhibition was prominent at ATP concentrations higher than required for activation of purinergic receptors, including P2X7 and P2Y2. The inhibitory effect of ATP is largely decreased when R75 in the first extracellular loop of Pannexin1 is mutated to alanine, indicating that ATP regulates this channel presumably through binding. To further investigate the structural property of the putative ATP binding site, we performed alanine-scanning mutagenesis of the extracellular loops of pannexin1. Mutations on W74, S237, S240, I247 and L266 in the extracellular loops 1 and 2 severely impaired the inhibitory effect of BzATP, indicating that they might be the essential amino acids in the putative binding site. Mutations on R75, S82, S93, L94, D241, S249, P259 and I267 moderately (≥50%) decreased BzATP sensitivity, suggesting their supporting roles in the binding. Mutations of other residues did not change the BzATP potency compared to wild-type except for some nonfunctional mutants. These data demonstrate that several amino acid residues on the extracellular loops of Pannexin1 mediate ATP sensitivity. Cells expressing mutant Panx1W74A exhibited an enhanced release of ATP, consistent with the removal of a negative feedback loop controlling ATP release.  相似文献   
84.
Arginine 352 (R352) in the sixth transmembrane domain of the cystic fibrosis transmembrane conductance regulator (CFTR) previously was reported to form an anion/cation selectivity filter and to provide positive charge in the intracellular vestibule. However, mutations at this site have nonspecific effects, such as inducing susceptibility of endogenous cysteines to chemical modification. We hypothesized that R352 stabilizes channel structure and that charge-destroying mutations at this site disrupt pore architecture, with multiple consequences. We tested the effects of mutations at R352 on conductance, anion selectivity and block by the sulfonylurea drug glipizide, using recordings of wild-type and mutant channels. Charge-altering mutations at R352 destabilized the open state and altered both selectivity and block. In contrast, R352K-CFTR was similar to wild-type. Full conductance state amplitude was similar to that of wild-type CFTR in all mutants except R352E, suggesting that R352 does not itself form an anion coordination site. In an attempt to identify an acidic residue that may interact with R352, we found that permeation properties were similarly affected by charge-reversing mutations at D993. Wild-type-like properties were rescued in R352E/D993R-CFTR, suggesting that R352 and D993 in the wild-type channel may interact to stabilize pore architecture. Finally, R352A-CFTR was sensitive to modification by externally applied MTSEA+, while wild-type and R352E/D993R-CFTR were not. These data suggest that R352 plays an important structural role in CFTR, perhaps reflecting its involvement in forming a salt bridge with residue D993.  相似文献   
85.
Southern California bays and harbors have been shown to contain high concentrations of a variety of contaminants, including polycyclic aromatic hydrocarbons (PAHs), metals, and pesticides. Conventional monitoring tools do not assess exposure to PAHs in fish, or sublethal effects, which can be more sensitive indicators of stress than traditional methods. This study was conducted to evaluate DNA damage (a sublethal effect) and PAH exposure in flatfish from southern California bays and harbors, and the Channel Islands. California halibut (Paralichthys californicus) were collected from eight bays and harbors (Ventura Harbor, Channel Islands Harbor, Marina del Rey, King Harbor, Alamitos Bay, Long Beach Harbor, Newport Bay, San Diego Bay), and a reference site off Camp Pendleton. Pacific sanddab (Citharichthys sordidus) were collected near four of the Channel Islands (San Miguel Island, Santa Cruz Island, Anacapa Island, Santa Barbara Island). Metabolites of high molecular weight PAHs in fish bile were characterized using a semi-quantitative technique that measures fluorescent aromatic compounds (FACs) in fish bile. DNA damage in fish blood cells was assessed by measuring the amount of single-strand breaks in stained DNA using the Comet assay. The concentration of FACs in fish from all bays and harbors was elevated, with average concentrations ranging from three to ten times greater than FACs in reference fish. FAC levels were elevated in Pacific sanddabs from a Channel Islands station located between Santa Cruz Island and Anacapa Island. DNA damage varied by a factor of five among California halibut from bays and harbors, with significant damage occurring in fish from Alamitos Bay. There was a significant association between FAC concentrations and DNA damage in California halibut at Marina del Rey and Ventura Harbor, but not at other locations, presumably due to contaminants other than PAHs.  相似文献   
86.
The spatial distribution of the muddy fine sand community from the Bay of Veys (western English Channel) were investigated during spring and autumn 1997. A grid of 55 and 54 sites was sampled in March and October, respectively, using two replicates per site of a Hamon grab (0.25 m2) for macrofauna collection and an additional one for sediment analysis. A total of 172 species were sampled with a dominance of polychaetes, followed by crustaceans and bivalves. The species richness and abundance show low temporal changes despite higher values in October than in March. In March, the mean abundance was 165 ind. 0.5 m−2; in October, the mean abundance was 212 ind. 0.5 m−2. Four assemblages from the Abra alba-Pectinaria koreni community were identified corresponding to a bathymetric and sedimentary gradient from muddy fine sands with high levels of fine particles in shallow water to fine sands in deeper water. The discussion focuses on factors prevailing on the spatial structure of sandy communities in the English Channel.  相似文献   
87.
Tight junctions are unique organelles in epithelial cells. They are localized to the apico-lateral region and essential for the epithelial cell transport functions. The paracellular transport process that occurs via tight junctions is extensively studied and is intricately regulated by various extracellular and intracellular signals. Fine regulation of this transport pathway is crucial for normal epithelial cell functions. Among factors that control tight junction permeability are ions and their transporters. However, this area of research is still in its infancy and much more needs to be learned about how these molecules regulate tight junction structure and functions. In this review we have attempted to compile literature on ion transporters and channels involved in the regulation of tight junctions.  相似文献   
88.
We studied cation regulation of wild-type ryanodine receptor type 1 (WTRyR1), type 3 (WTRyR3), and RyR3/RyR1 chimeras (Ch) expressed in 1B5 dyspedic myotubes. Using [3H]ryanodine binding to sarcoplasmic reticulum (SR) membranes, Ca2+ titrations with WTRyR3 and three chimeras show biphasic activation that is allosterically coupled to an attenuated inhibition relative to WTRyR1. Chimeras show biphasic Mg2+ inhibition profiles at 3 and 10 μM Ca2+, no observable inhibition at 20 μM Ca2+ and monophasic inhibition at 100 μM Ca2+. Ca2+ imaging of intact myotubes expressing Ch-4 exhibit caffeine-induced Ca2+ transients with inhibition kinetics that are significantly slower than those expressing WTRyR1 or WTRyR3. Four new aspects of RyR regulation are evident: (1) high affinity (H) activation and low affinity (L) inhibition sites are allosterically coupled, (2) Ca2+ facilitates removal of the inherent Mg2+ block, (3) WTRyR3 exhibits reduced cooperativity between H activation sites when compared to WTRyR1, and (4) uncoupling of these sites in Ch-4 results in decreased rates of inactivation of caffeine-induced Ca2+ transients.  相似文献   
89.
Sponges assemblages were sampled in four coastal study regions (Malindi, Kenya; Quirimba Archipelago, northern Mozambique; Inhaca Island, Southern Mozambique and Anakao, Madagascar) in the west Indian Ocean. Sponge species were counted in multiple 0.5 m2 quadrats at depths of between 0 and 20 m at a number of sites within localities within each region. Despite the relatively small areas sampled, sponge samples comprised a total of 130 species and 70 genera of the classes Demospongiae and Calcarea. Sponges are clearly a major taxon in these regions in terms of numbers of species, percentage cover or biomass, although their ecology in the west Indian Ocean is virtually unknown. Nearly half of the genera, e.g. Iotrochota, found were species with a so‐called Tethyan distribution. Most of the other genera were cosmopolitan, e.g. Clathria, but some were cold water (Coelosphaera), Indo‐Australian (Ianthella) or circum‐African (Crambe). Many of the species encountered in the present study occurred in at least two study regions, many in more and could occupy large areas of substratum. Some of these, e.g. Xestospongia exigua, are commonly found throughout the Indo‐west Pacific region where they also occupy much space. The endemicity of the shallow water sponge faunas in East Africa (20–25%) seem to be high within the Indo‐Pacific realm but are lower than northern Papua New Guinea. The tropical regions (Kenya and Northern Mozambique) were more speciose than subtropical regions (southern Mozambique and Madagascar) but not significantly more diverse (Shannon H′). Although latitude was not a major influence on sponge community patterns, hard substratum assemblages did form a cline from the tropics to Southern Mozambique, linked by Madagascar. Substratum nature (habitat) was most important in influencing the suite and number of species present. Sponge assemblages of soft substrata were much more dissimilar, both within and between habitats, than those on hard substrata. There was a predictable variability in species richness between hard substratum habitats: coral reefs being speciose and caves being less so. Our findings showed that both patterns and influences on species richness may be decoupled from those influencing diversity. In our data species richness, but not diversity, showed striking regional and bathymetric trends. In addition, sponge species richness mainly split at coral reef vs. non‐reef habitats, whilst diversity divided principally into assemblages on hard and soft substrata. We consider this dichotomy of findings between species richness and diversity values to be important, as these are two principal measures used for the interpretation of biodiversity.  相似文献   
90.
In co-translational translocation, the ribosome funnel and the channel of the protein translocation complex SecYEG are aligned. For the nascent chain to enter the channel immediately after synthesis, a yet unidentified signal triggers displacement of the SecYEG sealing plug from the pore. Here, we show that ribosome binding to the resting SecYEG channel triggers this conformational transition. The purified and reconstituted SecYEG channel opens to form a large ion-conducting channel, which has the conductivity of the plug deletion mutant. The number of ion-conducting channels inserted into the planar bilayer per fusion event roughly equals the number of SecYEG channels counted by fluorescence correlation spectroscopy in a single proteoliposome. Thus, the open probability of the channel must be close to unity. To prevent the otherwise lethal proton leak, a closed post-translational conformation of the SecYEG complex bound to a ribosome must exist.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号