首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3651篇
  免费   38篇
  国内免费   48篇
  2022年   17篇
  2021年   28篇
  2020年   31篇
  2019年   47篇
  2018年   35篇
  2017年   19篇
  2016年   32篇
  2015年   78篇
  2014年   151篇
  2013年   159篇
  2012年   117篇
  2011年   204篇
  2010年   195篇
  2009年   187篇
  2008年   205篇
  2007年   224篇
  2006年   212篇
  2005年   182篇
  2004年   169篇
  2003年   126篇
  2002年   78篇
  2001年   46篇
  2000年   62篇
  1999年   61篇
  1998年   57篇
  1997年   31篇
  1996年   33篇
  1995年   76篇
  1994年   58篇
  1993年   52篇
  1992年   59篇
  1991年   62篇
  1990年   35篇
  1989年   38篇
  1988年   37篇
  1987年   42篇
  1986年   32篇
  1985年   52篇
  1984年   57篇
  1983年   47篇
  1982年   59篇
  1981年   61篇
  1980年   39篇
  1979年   38篇
  1978年   30篇
  1977年   15篇
  1976年   12篇
  1973年   9篇
  1972年   11篇
  1971年   7篇
排序方式: 共有3737条查询结果,搜索用时 31 毫秒
21.
Summary Thymic nurse cells (TNC), which are multicellular complexes composed of epithelial cells and thymocytes, were obtained from C3H-mice thymuses. They were described by means of light and electron microscopy. The morphology of epithelial cells forming isolated TNC compared to that of small tissue fragments obtained by enzymatic digestion revealed that TNC could be derived from all parts of the thymus: cortex, corticomedullary junction and medulla, the cortex being their principal source. This variety of origin, the presence of several epithelial cells inside a single TNC, the presence of non-lymphoid cells, and the various locations of eleaved desmosomes confirmed that their aspect in vitro as round and sealed structures can be considered to be an artifact due to the isolation technique used. Indeed, during this procedure, they are formed by a process of wrapping of the epithelial cytoplasm around the tightly associated thymocytes. All three epithelial cell types: cortical reticular cells, medullary reticular cells, and medullary globular cells can form TNC.A portion of this work was presented at the first Thymus Workshop. Rolduc, Netherlands, April, 1988  相似文献   
22.
Summary Fibrous components other than collagen fibrils in the reticular fiber of mouse lymph node were studied by electron microscopy. Bundles of microfibrils not associated by elastin and single microfibrils dispersed among collagen fibrils were present. The diameter of the microfibrils was 13.29±2.43 nm (n=100). Elastin-associated microfibrils occurred at the periphery of the reticular fiber. Elastin was enclosed by microfibrils, thus forming the elastic fiber, which was clearly demonstrated by tannic acid-uranyl acetate staining. In the reticular fiber of lymph nodes, the elastic fiber consisted of many more microfibrils and a small amount of elastin. These microfibrils, together with the collagen fibrils, may contribut to the various functions of the reticular fibers.  相似文献   
23.
Summary Lymph nodes contain an extensive array of extracellular matrix fibers frequently referred to as reticular fibers because of their reticular pattern and positive reaction with silver stains. These fibers are known to contain primarily type-III collagen. In the present study, frozen and plastic-embedded sections of mouse and human lymph nodes were subjected to immunostaining with a panel of monospecific antibodies directed against type-IV collagen, type-III collagen, laminin, entactin, and heparan sulfate proteoglycan. Immunofluorescent staining revealed that, in addition to being uniformly stained with antibodies to type-III collagen, these fibers also stained positively with antibodies to type-IV collagen and to other basement-membrane-specific components. Furthermore, the basement-membrane-specific antibodies stained the outer surface of individual fibers. These same type-III collagen-rich fibers were distinct from blood vascular basement membranes since they did not react with antibodies to factor VIII-related antigen, an endothelial-cell-specific marker. The role of these basement-membrane-specific components associated with the reticular fibers of lymphoid tissue is unknown. However, it is possible that the ligands promote attachment of reticular fibroblasts as well as macrophages and lymphocytes to the extracellular matrix fibers.  相似文献   
24.
Summary This study compares the action of inhibitors of the eicosanoid cascade on calcium-induced myofilament damage in cardiac muscle of the perfused frog heart and incubated frog ventricle slices, and in skeletal muscle of incubated mammalian diaphragm and isolated and saponin-skinned amphibian pectoris cutaneous muscle. Mepacrine (10-5M) and indomethacin (3×10-6M) protected completely against myofilament damage induced by entry of calcium in the calcium-paradox in frog heart. However, inhibition of phospholipase A2 (PLA2) (with chlorpromazine, 2×10-4M, or mepacrine, 10-5M, 5x10-5M), of cyclo-oxygenase enzymes (with indomethacin, 3x10-6M to 10-5M or BW755C, 3.8x10-4M), or of lipoxygenase enzymes (with BW755C, 3.8x10-4M or nordihydroguaiaretic acid, 2x10-6M or 5x10-6M) all failed in intact cardiac or skeletal muscle cells to prevent the myofilament damage that is rapidly triggered by 10-2M caffeine, 6x10-6M ruthenium red, 10-4M DNP or 5 g ml-1 A23187. These agents also failed completely to protect against myofilament damage in saponin-skinned amphibian skeletal muscle when [Ca]i was raised to 8x10-6M. Thus, inhibition of PLA2 does not protect the myofilament apparatus against calcium released intracellularly, and it is suggested that mepacrine and indomethacin can block entry of calcium in the calcium-paradox in the amphibian heart. Chlorpromazine (2x10-4M) and mepacrine (10-3M) at zero [Ca] caused severe myofilament damage in skinned muscle, possibly due to an effect on membranes. Since inhibitors of PLA2 and of lipoxygenases prevent efflux of creatine kinase and sarcolemma damage in mammalian skeletal muscle, it is evident that experimentally-induced rises in [Ca]i (by caffeine or A23187) can trigger two separate pathways: (i) PLA2 and the arachidonic acid cascade which culminate in membrane damage, and (ii) a different, Ca-activated system that causes rapid damage of myofilaments.  相似文献   
25.
Summary Ultrastructural studies of pancreatic islets have suggested that crinophagy provides a possible mechanism for intracellular degradation of insulin in the insulin-producing B-cells. In the present study, a quantitative estimation of crinophagy in mouse pancreatic islets was attempted by morphometric analysis of lysosomes containing immunoreactive insulin. Isolated islets were incubated in tissue culture for one week in 3.3, 5.5 or 28 mmol/l glucose. The lysosomes of the pancreatic B-cells were identified by morphological and enzyme-cytochemical criteria and divided into three subpopulations comprising primary lysosomes and insulin-positive or insulin-negative secondary lysosomes. Both the volume and numerical density of the primary lysosomes increased with increasing glucose concentration. The proportion of insulin-containing secondary lysosomes was highest at 5.5 and lowest at 3.3 mmol/l glucose. Insulin-negative secondary lysosomes predominated at 3.3 mmol/l glucose. Studies of the dose-response relationships of glucose-stimulated insulin biosynthesis and insulin secretion of the pancreatic islets showed that biosynthesis had an apparent Km-value for glucose of 7.0 mmol/l, whereas it was 14.5 mmol/l for secretion. The pronounced crinophagic activity at 5.5 mmol/l glucose may thus be explained by the difference in glucose sensitivity between insulin biosynthesis and secretion resulting in an intracellular accumulation of insulin-containing secretory granules. The predominance of insulin-negative secondary lysosomes at 3.3 mmol/l glucose may reflect an increased autophagy, whereas the predominance of primary lysosomes at 28 mmol/l glucose may reflect a generally low activity of intracellular degradative processes.  相似文献   
26.
Summary Previous studies have shown that the secretory products of Paneth cells contain antibacterial agents (lysozyme, IgA) that are affected by the bacterial milieu in the intestine. To investigate whether Paneth-cell secretion is controlled via cholinergic mechanisms, the ultrastructure of Paneth cells was studied in four animal groups: (1) germfree (GF) control mice (Jcl: ICR [GN], male, 13 weeks old), (2) GF mice injected subcutaneously with atropine sulfate (200 mg/kg body weight, dissolved in physiological saline 20 mg/ml), (3) ex-GF mice inoculated with feces from specific-pathogen-free (SPF) mice, and (4) ex-GF mice injected with atropine and inoculated with feces from SPF mice. In ex-GF mice inoculated with feces, 70–90% of the Paneth cells showed fewer secretory granules than those from GF mice (p<0.01). Approximately 30% of the Paneth cells had a large vacuole (3–10 m diameter) in the apical cytoplasm. Exocytosed electron-dense material from secretory granules was observed in a few crypt lumens. In ex-GF mice inoculated with feces and given atropine, about 90% of the Paneth cells contained numerous secretory granules, like those in GF control mice, but vacuolated Paneth cells and exocytotic figures were rare; thus the secretion of Paneth cells was blocked by atropine. It is therefore possible that the bacterial milieu in the intestine affects the secretory activity of Paneth cells via cholinergic mechanisms.  相似文献   
27.
The nature and significance of so-called dark keratinocytes in the epidermis during chemical carcinogenesis is still a matter of concern and debate. Based on ultrastructural observations it has been suggested that dark cells most often are shrunken cells. Reports on skin carcinogenesis, however, claim that dark cells are a sign of ongoing tumor promotion and represent those stem cells in the epidermis from which the tumors originate. It is therefore important to find out whether these cells are simply injured and shrunken cells, or vital cells of great importance for carcinogenesis. Dark cells are assumed to be rich in ribosomes. There is evidence, however, that the observed number of dark cells is highly dependent on tissue fixation. In the present ultrastructural study, morphometric methods were used to compare the effects of two different fixation procedures on the amount of cytoplasmic ribosomes in dark cells from both untreated and carcinogen-treated hairless mouse epidermis. The results show that the ultrastructural features of both dark and clear cells vary considerably with different fixation procedures. In acetone-treated controls typical dark cells are only observed when the fixative has a lower osmotic activity than the plasma. With iso-osmolal fixation typical dark cells are not observed. After an abortive two-stage carcinogenesis treatment, in which a single application of 9,10-dimethyl-l,2-benzanthracene (DMBA) in acetone was followed by a single application of 12-O-tetradecanoyl-13-acetate (TPA) in acetone, signs of cell injury could be found after both fixation procedures. With DMBA/TPA and hypo-osmolal fixation the number of dark cells seemed to increase, whereas only signs of cell injury with occurrence of some heavily altered “clear cells” dominated the picture with iso-osmolal fixation. Morphometry showed that both the numerical and the volumetric densities of cytoplasmic ribosomes in basal keratinocytes varied most significantly with the fixation procedure used. The cytoplasmic volumes did not vary in a way that could explain these differences. One might therefore assume that the number of ribosomes depends on the fixative. Large swelling artifacts occurred when a fixative with low osmotic activity was used, leading to compression of neighboring cells. Hence, an increased ribosomal density reported previously in dark cells is probably related to such cell volume artifacts and does not reflect an actually increased quantity of ribosomes. With both fixation procedures, a single application of DMBA followed by one of TPA appeared to produce an increased number of ribosomes in basal keratinocytes. When hypo-osmolal fixation was used, however, treatment with DMBA/TPA did not influence the cytoplasmic volume or the numerical density of ribosomes, in dark cells. This might indicate that so-called dark keratinocytes following DMBA/TPA treatment are functionally inactive cells that appear more vulnerable than active cells to compression during hypo-osmolal fixation.  相似文献   
28.
Melanocytes originate from the neural crest in vertebrates and migrate to the body surface where they differentiate into functional cells. Genes involved in melanocyte differentiation can be classified into two groups. One of them consists of the functional genes that control proteins specific to the function of the melanocyte. As the representative gene of this category, albino (c) locus in the mouse is considered to control tyrosinase, the key enzyme in melanogenesis. cDNA for mouse tyrosinase has been cloned and sequenced. The cDNA can be used to detect tyrosinase mRNA synthesized during melanocyte differentiation. On the other hand, genes such as brown (b) or pink-eyed dilution (p) have been assumed to control melanosome proteins. The other category consists of genes that regulate the expression of these functional genes directly or indirectly. In the mouse, so-called white-spotting genes and genes of the agouti series are considered to fall into this category. Based on the fact that mutations at the white-spotting loci result in the absence of melanocytes in a particular area of skin, it is assumed that some of these loci control the factors that promote either differentiation or migration of melanoblasts and are candidates for the classic regulator genes Genes at the agouti (a) locus in the mouse determine the type of melanin synthesized in hair follicle melanocytes, that is eumelanin or pheomelanin. An interesting feature of this locus is that the site of gene action is not within the melanocytes but in the cells surrounding them. The results of our study indicate that the gene product of the a-locus interacts with α-MSH at the α-MSH receptor site, regulates the cellular cAMP level via a signal transduction system and, in turn, determines the type of melanin synthesized in the cells.  相似文献   
29.
Summary Two-cell mouse ova, which were centrifuged for l h at 70 000–90 000xg, showed a precise stratification of the cytoplasm and an elongation of the nucleus. The ova were fixed at different times and observed by light and electron microscopy using cytochemical methods and detergent extractions. Within 40 min after centrifugation the normal-looking morphology was recovered except for the persisting lipid caps at the centripetal poles of the blastomeres. Cleavage, compaction and blastulation were not prevented by centrifugation. Treatments with colcemid or cytochalasin D delayed but did not impair recovery. These results suggest that a resilient cytoskeletal structure may be involved in this kind of embryonic regulation.  相似文献   
30.
Summary We have examined the persistence of midbody channels during the second, third, and fourth cleavage cycles of the mouse using immunofluorescence to map the distribution of midbody microtubule bundles in intact embryos. Electron microscopy showed these bundles to be a characteristic feature of midbodies throughout the interphase period. In recently-divided embryos at each cleavage stage the number of midbodies was half the number of blastomeres, and declined towards zero as the next cleavage approached. This indicated to us that the only midbodies present in each stage were those which had arisen in the immediately-preceding division. Of those blastomeres which were in mitosis at the time of fixation, less than 4% were connected via a midbody to another blastomere, demonstrating that persistence of midbodies beyond a single cleavage cycle is a rare event. We conclude that midbody channels in our embryos are likely to connect only pairs of sister blastomeres because midbodies do not persist through multiple cleavage cycles. Midbody channels cannot, therefore, be regarded as providing extensive cell coupling in advance of the onset of gap junctional communication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号