首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   7篇
  国内免费   12篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   1篇
  2016年   4篇
  2015年   6篇
  2014年   10篇
  2013年   11篇
  2012年   8篇
  2011年   14篇
  2010年   13篇
  2009年   9篇
  2008年   13篇
  2007年   11篇
  2006年   13篇
  2005年   6篇
  2004年   8篇
  2003年   6篇
  2002年   6篇
  2000年   8篇
  1999年   5篇
  1998年   6篇
  1997年   5篇
  1996年   8篇
  1995年   4篇
  1994年   4篇
  1993年   5篇
  1992年   6篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   4篇
  1986年   1篇
  1985年   6篇
  1984年   5篇
  1983年   5篇
  1982年   5篇
  1981年   2篇
  1980年   3篇
  1976年   1篇
排序方式: 共有245条查询结果,搜索用时 15 毫秒
111.
In this report, we describe an HPLC with electrochemical detection assay for the simultaneous measurement of levels of morphine, serotonin, 5-hydroxyindole-3-acetic acid, and homovanillic acid in dialysates of various brain areas and CSF in the awake rat. Morphine could be detected in the dialysates after a single intraperitoneal injection, with doses as low as 1.0 mg/kg. The time course of extracellular morphine content in the lateral hypothalamus, striatum, cerebellum, periaqueductal gray, and dorsal horn of the spinal cord and in CSF, from the ventricles and cisterna magna, was similar. We detected morphine in the first 15-min sample, and levels peaked 45-60 min after injection. Maximal dialysate levels, however, varied with the type of dialysis probe used and the area sampled. The most efficient in vivo recovery was in CSF dialysates from the cisterna magna, presumably because of minimal tissue interference with the dialysis probe. For this reason, the cisterna is an ideal region for sampling CSF. Morphine had no significant effect on the extracellular concentrations of serotonin in any of the areas studied and did not modify or only slightly increased levels of tissue metabolites; however, morphine markedly increased the CSF levels of 5-hydroxyindole-3-acetic acid and homovanillic acid. Because microdialysis in freely moving animals permits assessment of the behavioral effects of morphine while continuously monitoring the drug levels in discrete brain regions, this approach will greatly facilitate future studies of the neurochemical basis of morphine's effects in the brain.  相似文献   
112.
To investigate the role of mesolimbic dopamine (DA) in the mechanism of drug dependence, extracellular DA was monitored by transcerebral dialysis in the caudal nucleus accumbens under basal conditions and after challenge with morphine (5 mg/kg s.c.) in control rats and in rats made dependent on and then deprived of morphine. Withdrawal from morphine resulted in a marked reduction of extracellular DA concentrations from control values at 1, 2, 3, and 5 days of withdrawal. After 7 days of withdrawal, DA output was less, but still significantly, reduced. Challenge with morphine resulted in stimulation of DA output in controls (maximum, 35%), no effect on the first day of withdrawal, and stimulation similar to controls' on days 2 and 7 of withdrawal. On day 5 and, particularly, on day 3 of withdrawal, morphine-induced stimulation of DA output was markedly potentiated (maximum, 100 and 160%, respectively). Changes in the sensitivity of DA transmission to morphine challenge were associated with changes in the behavioral stimulant effects of morphine, with tolerance on day 1 and marked sensitization on days 3 and 5 but also on day 7, when morphine-induced stimulation of transmission was no longer potentiated. The results indicate that repeated morphine administration induces a state of dependence in DA neurons and a short-lasting tolerance followed by an increased sensitivity to its stimulant effects on DA transmission. These changes might play an important role in the development of opiate addiction and in the maintenance of opiate self-administration in dependent subjects.  相似文献   
113.
Quantitative autoradiography of [14C]deoxyglucose, [14C]iodoantipyrine, and [14C]leucine was used to estimate regional cerebral glucose metabolism, cerebral blood flow, and cerebral protein synthesis, respectively, in rats during morphine dependence and withdrawal. Glucose metabolism was elevated in 19 of 26 selected brain regions; the elevations in glucose metabolism were similar when data were expressed as either optical density ratios or as calculated rate values of mol/100 gm/min. Restraining the rats produced heterogeneous effects on glucose metabolism during morphine withdrawal (MW). Neither estimated cerebral blood flow nor cerebral protein synthesis were affected by morphine and/or naloxone treatments in either naive or morphine-dependent rats. The data demonstrate that changes in regional cerebral glucose utilization occur independently of blood flow changes and exclude the possibility that regional changes in glucose utilization occur as a consequence of large regional changes in protein synthesis rates in brain. These data confirm the utility of 2-deoxyglucose measures of MW as objective biochemical indices of opiate agonist and antagonist effects in vivo.  相似文献   
114.
Summary. Proteome is a natural consequence of the post-genome era when the HUGO project (Human Genome Organization) has almost been completed. Here, a specifically aimed proteome in drug dependence – morphinome, is described, including tasks, strategies and pitfalls of the methodology.  相似文献   
115.
Dosing-time-dependent changes in the effect and toxicity of morphine were examined in mice housed under alternating 12 h light (07:00 to 19:00 h) and dark (19:00 to 07:00 h) cycles. Morphine (0.5 mg/kg) was injected intraperitoneally (i.p.) in animals to assess its beneficial effect (i.e., protection against the kaolin-induced, bradykinin-mediated, writhing reaction) and its toxicity (i.e., alteration of the hepatic enzymes of aspartate aminotransferase [AST] alanine aminotransferase [ALT], and glutathione [GSH] in separate experiments). The magnitude of the analgesic effect of morphine depended on dosing time, with minimum effect at 02:00 h and maximum effect at 14:00 h. The serum hepatic enzyme levels of AST and ALT increased after dosing morphine (100 mg/kg) at 02:00 and 14:00 h. Time courses of these enzymes did not differ between the two trials. However, hepatic GSH, which is involved in the detoxification of chemical compounds, significantly decreased after i.p. morphine injection at 02:00 but not at 14:00 h. Overall, the results suggest that the analgesic effect of morphine is greater after dosing during the resting than during the activity phase of mice that have been induced with bradykinin-mediated pain. Drug-induced hepatic damage as inferred by GSH alteration, however, may be greater after dosing during the active phase.  相似文献   
116.
猪脑组织提取液经SephadexG-50分子筛层析,S-SepharoseFastFlow阳离子交换柱层析及两次HPLC分离得到一分子量为12000,等电点pI7.1的多肽,并测定了其氨基酸组成和N末端部分序列:N-phe-Lys-Gly-Phe-Pro-Asp-Asp/(Lys)-Lys/(Asp)-Asp-Tyr.给昆明小鼠脑室注射或尾静脉注射该肽均能抑制吗啡引起的镇痛作用,其作用随着注射剂量的增大而增强.用BALB/C小鼠制备了该肽的抗血清,脑室注射此抗血清能明显逆转昆明小鼠对吗啡的耐受.因为这种来自猪脑的具有抗阿片镇痛作用的肽有99个氨基酸,所以简称此肽为AOP-99a(anti-oPioidpeptide).  相似文献   
117.
Abstract: Using microdialysis, changes in monoamine metabolism were monitored in the locus coeruleus of freely moving rats during opiate withdrawal concomitantly with behavioral symptoms. Rats were infused with morphine (2 mg/kg/h, s.c.) or saline for 5 days and challenged with naltrexone (100 mg/kg, s.c.) on day 6. Following naltrexone challenge, the classic behavioral symptoms of morphine withdrawal were observed in rats treated with morphine but not in saline-infused rats. In morphine-dependent rats, naltrexone induced a marked increase (280%) in dialysate concentrations of 3,4-dihydroxyphenylacetic acid, an index of the functional activity of the noradrenergic neurons in the locus coeruleus. The local concentrations of the serotonin metabolite 5-hydroxyindoleacetic acid were also increased (70%) during morphine withdrawal. Taken together, these results (a) confirm in unanesthetized rats the hypothesis of an activation by opiate withdrawal of noradrenergic neurons in the locus coeruleus and (b) suggest an increase in serotonergic transmission in the same nucleus during morphine withdrawal.  相似文献   
118.
Decker, B., B. Vadokas, U. Kutschenreuter, K. Golenhofen, K. Voigt, G. P. Mcgregor and K. Mandrek. Action of FMRFamide-like peptides on porcine gastrointestinal motility in vitro. Peptides 18(10) 1531–1537, 1997.—Mechanical activity was recorded in circular and longitudinal smooth muscle preparations isolated from extensive regions of the porcine gastrointestinal tract in response to the FMRFamide-like neuropeptides F8Famide and A18Famide. In all preparations, the peptides were about equipotent in producing phasic contractions or enhancing spontaneous activity. The most prominent responses were observed in jejunal longitudinal strips which were on the average 91% (±4% SEM, n = 15; 10−6 M) of the histamine (10−5 M) responses. The peptide-induced phasic activity was completely abolished by nifedipine but was unaffected by tetrodotoxin, atropine, phentolamine, yohimbine, phenoxybenzamine, propranolol, methysergide, cimetidine, indomethacin, levallorphane or naloxone. Both peptides enhanced acetylcholine-induced contractions. However, bovine ileum and guinea-pig taenia coli was not affected by these peptides. The results indicate that F8F- and A18F-amide contract porcine gastrointestinal smooth muscle by acting directly via non-opioid receptors on L-type calcium channels. In addition an increase of the sensitivity to cholinergic stimulation occurs.  相似文献   
119.
120.
Opioid receptors have been characterized in Drosophila neural tissue. [3H]Etorphine (universal opioid ligand) bound stereospecifically, saturably, and with high affinity (KD = 8.8 +/- 1.7 nM; Bmax = 2.3 +/- 0.2 pmol/mg of protein) to Drosophila head membranes. Binding analyses with more specific ligands showed the presence of two distinct opioid sites in this tissue. One site was labeled by [3H]dihydromorphine ([3H]DHM), a mu-selective ligand: KD = 150 +/- 34 nM; Bmax = 3.0 +/- 0.6 pmol/mg of protein. Trypsin or heat treatment (100 degrees C for 15 min) of the Drosophila extract reduced specific [3H]DHM binding by greater than 80%. The rank order of potency of drugs at this site was levorphanol greater than DHM greater than normorphine greater than naloxone much greater than dextrorphan; the mu-specific peptide [D-Ala2,Gly-ol5]-enkephalin and delta-, kappa-, and sigma-ligands were inactive at this site. The other site was labeled by (-)-[3H]ethylketocyclazocine ((-)-[3H]EKC), a kappa-opioid, which bound stereospecifically, saturably, and with relatively high affinity to an apparent single class of receptors (KD = 212 +/- 25 nM; Bmax = 1.9 +/- 0.2 pmol/mg of protein). (-)-[3H]EKC binding could be displaced by kappa-opioids but not by mu-, delta-, or sigma-opioids or by the kappa-peptide dynorphin. Specific binding constituted approximately 70% of total binding at 1 nM and approximately 50% at 800 nM for all three radioligands ([3H]etorphine, [3H]EKC, and [3H]DHM). Specific binding of the delta-ligands [3H][D-Ala2,D-Leu5]-enkephalin and [3H][D-Pen2,D-Pen5]-enkephalin was undetectable in this preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号