首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   4篇
  国内免费   4篇
  2022年   7篇
  2021年   4篇
  2020年   2篇
  2019年   5篇
  2018年   2篇
  2017年   5篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   12篇
  2012年   2篇
  2011年   6篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  1999年   2篇
  1991年   1篇
排序方式: 共有60条查询结果,搜索用时 203 毫秒
31.
辣木(Moringa oleifera)具有重要的经济价值.土壤水分及氮素有效性对辣木生长具有显著影响.以辣木'PKM I'品种为研究材料,于华南农业大学资源环境学院生态学教学实验基地温室内进行盆栽试验,试验设置3个水分:分别为田间饱和持水量的40%(W1)、60%(W2)、80%(W3),以及4个氮水平:0 g ?株...  相似文献   
32.
Moringa oleifera is a pantropical tree of the family Moringaceae. A previously undescribed property of an aqueous extract from the seeds of this plant is the modulation of ruminal fermentation patterns, especially protein degradation, as demonstrated in a short-term batch incubation system. Gas, short chain fatty acids (SCFA) and cellulolytic enzyme activities were determined as general fermentation parameters. A dot blot assay able to directly detect true protein in rumen fluid samples was used to quantify protein degradation. For complex substrates the interpretation of protein degradation profiles was amended by polyacrylamide gel electrophoresis (PAGE) of the samples. When incubated with pure carbohydrates at a concentration of 1 mg ml–1, the extract reduced microbial degradation of the model protein, bovine serum albumin (BSA), such that its concentration was at least 40% above the control after 12 h of incubation. Total protein degradation was thus delayed by approximately 9 h. When fermented along with wheat straw, leaf protein (Rubisco) was almost entirely protected during 12 h of fermentation. The degradation of soy proteins was retarded by at least 4- 6 h, depending on the protein band. There were strong side effects on the fermentation of pure cellulose (SCFA yield -60% after 12 h), whereas cellobiose and starch fermentation were less affected (-18 and -8%, respectively). When the complex substrates were fermented, SCFA yield was reduced by approximately 30% after 12 h. In our work we clearly demonstrate the efficacy of the new substance, which is neither a tannin nor a saponin, in an in vitro system, using pure as well as complex substrates. The properties shown in vitro for the crude extract suggest that it could have a positive effect on the protein metabolism of ruminants under intensive management and that negative side effects can be overcome by an optimized dosage. If the chemical nature of the active substance and its mechanism of action can be clarified, it may provide an alternative to replace critical synthetic feed additives (such as antibiotics) for high yielding dairy cows.  相似文献   
33.
Moringa peregrinais an endangered species of Moringaceae.M. peregrinais a multipurpose tree with a wide variety of potential uses including its medicinal activity. In our study, a rapid and efficient micropropagation protocol for M. peregrina has been established. In vitro germinated seedlings were cultured on Murashige and Skoog (MS) medium supplemented with different levels of either 6-benzyladenine (BA) or kinetin (Kin). The maximum shoot proliferation of 6.5 shoots per explant with 100 % shoot proliferation rate was observed on MS medium supplemented with 1.0 mg/l BA. On the other hand, MS medium supplemented with 1 mg/l indole-3-butyric acid (IBA) resulted in the maximum number of roots. Micropropagated plants were successfully acclimatized. Genetic stability of micropropagated plants was assessed using Inter-Simple Sequence Repeat (ISSR). The amplification products were monomorphic in all in vitro grown plants. No polymorphism was detected indicating the genetic integrity of in vitro propagated plants. This micropropagation protocol could be useful for raising genetically uniform plants for plant propagation and commercial cultivation.  相似文献   
34.
Glycosides of pyrrole alkaloid (pyrrolemarumine 4″-O-α-l-rhamnopyranoside) and 4′-hydroxyphenylethanamide (marumosides A and B) were isolated from leaves of Moringa oleifera along with eight known compounds; niazirin, methyl 4-(α-l-rhamnopyranosyloxy)benzylcarbamate, benzyl β-d-glucopyranoside, benzyl β-d-xylopyranosyl-(1 → 6)-β-d-glucopyranoside, kaempferol 3-O-β-d-glucopyranoside, quercetin 3-O-β-d-glucopyranoside, adenosine and l-tryptophan. Structure elucidations were based on analyses of chemical and spectroscopic data including 1D- and 2D-NMR.  相似文献   
35.
A severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) led novel coronavirus disease (COVID-19) outbreak spread through China has become the biggest global public health challenge today. The virus upon several mutations has led to the resurgence of more infectious and lethal variants infecting over 298 million people with more than 5.46 million deaths worldwide by the end of December, 2021. Though vaccines are available, various preventive measures particularly a high body immunity is still extremely important which determines the likelihood of disease severity and subsequent recovery in the current and future pandemics. This review acknowledges the potentiality of miraculous Moringa oleifera Lam. against recently evolved novel coronavirus and accompanying health complications. Moringa a well-proven super-food, densely packed with an abundant quantity of 92 minerals, several vitamins, 46 antioxidants, and numerous bioactive compounds, thus own a massive therapeutic potential for healing all levels of nutritional deficiencies and poor immunities and cure above 300 diseases. Moringa acts as anti-asthmatic, anti-cancerous, anti-diabetic, anti-inflammatory, hypotensive, hepatic, renal and cardio-protective, and anti-viral in nature. Thus it may reduce the severity of COVID-19 infections and associated serious medical emergencies. In addition, self-isolation at home or the workplace has put people at increased risk of physical and mental sicknesses, which could be simply addressed by integrating this wonderful plant into everyday diet. Furthermore, the immune-modulatory properties and viral inhibiting nature of moringa contribute to reduced risk of COVID-19 infection and quicker recovery from its symptoms. As per the existing pieces of literature, it is a great time to harness the esteemed moringa for safeguarding people from the terrible ongoing COVID-19 situation and other future pandemics.  相似文献   
36.
Abstract

The present study aims at evaluating a batch scale biosorption potential of Moringa oleifera leaves (MOL) for the removal of Pb(II) from aqueous solutions. The MOL biomass was characterized by FTIR, SEM, EDX, and BET. The impact of initial concentrations of Pb (II), adsorbent dosage, pH, contact time, coexisting inorganic ions (Ca2+, Na+, K+, Mg2+, CO32?, HCO3?, Cl?), electrical conductivity (EC) and total dissolved salts (TDS) in water was investigated. The results revealed that maximum biosorption (45.83?mg/g) was achieved with adsorbent dosage 0.15?g/100?mL while highest removal (98.6%) was obtained at adsorbent biomass 1.0?g/100?mL and pH 6. The presence of coexisting inorganic ions in water showed a decline in Pb(II) removal (8.5% and 5%) depending on the concentrations of ions. The removal of Pb(II) by MOL decreased from 97% to 89% after five biosorption/desorption cycles with 0.3?M HCl solution. Freundlich model yielded a better fit for equilibrium data and the pseudo-second-order well described the kinetics of Pb(II) biosorption. FTIR spectra showed that –OH, C–H, –C–O, –C?=?O, and –O–C functional groups were involved in the biosorption of Pb(II). The change in Gibbs free energy (ΔG = ?28.10?kJ/mol) revealed that the biosorption process was favorable and thermodynamically driven. The results suggest MOL as a low cost, environment-friendly alternative biosorbent for the remediation of Pb(II) contaminated water.  相似文献   
37.
The genus Moringa was the family of Moringaceae and Moringa oleifera and Moringa peregrina are the most famous species of Moringa. M. peregrina is widely grown in Saudi Arabia, Iran and India. Therefore, based on these reports, this study aimed to investigate the first systematic attempt to regulate the genetic diversity of the species M. peregrina in Saudi Arabian samples collected from several geographic locations using internal transcribed sequences. Genomic DNA was separated by CTAB extraction method and PCR was performed. Later on, DNA sequencing was performed for PCR products with ITS. In conclusion, the present study affords the first report on genetic stability of M. peregrina using ITS analysis in Saudi Arabia. Further studies are suggested in order to study in different regions.  相似文献   
38.
The community structure of arbuscular mycorrhizal (AM) fungi in the roots of drought-resistant trees, Moringa spp., was examined in semiarid regions in Madagascar and Uganda. Root samples were collected from 8 individuals of M. hildebrandtii and 2 individuals of M. drouhardii in Madagascar and from 21 individuals of M. oleifera in Uganda. Total DNA was extracted from the root samples, and partial nSSU rDNA of AM fungi was amplified using a universal eukaryotic primer NS31 and an AM fungalspecific primer AM1. The PCR products were cloned and divided by restriction fragment length polymorphism (RFLP) analysis with HinfI and RsaI. Some representatives in each RFLP types were sequenced, and a neighbor-joining phylogenetic analysis was conducted for the obtained sequences with analogous sequences of AM fungi. The RFLP and phylogenetic analyses showed that AM fungi closely related to Glomus intraradices or G. sinuosum were detected in many samples. The AM fungal groups frequently detected in the Moringa spp. might be widely distributed species in semiarid environments.  相似文献   
39.
The natural coagulant Moringa oleifera lectin (MoL) as cationic protein is a promising candidate in coagulation process of water treatment plant. Introducing the gene encoding MoL into a host, Pichia pastoris, to secrete soluble recombinant protein is assessed in this study. Initial screening using PCR confirmed the insertion of MoL gene, and SDS-PAGE analysis detected the MoL protein at 8 kDa. Cultured optimization showed the highest MoL protein at 520 mg/L was observed at 28 °C for 144 h of culturing by induction in 1% methanol. Approximately, 0.40 mg/mL of recombinant MoL protein showed 95 ± 2% turbidity removal of 1% kaolin suspension. In 0.1% kaolin suspension, the concentration of MoL at 10 μg/mL exhibits the highest turbidity reduction at 68 ± 1%. Thus, recombinant MoL protein from P. pastoris is an effective coagulant for water treatment.  相似文献   
40.
Natural extracts have been of very high interest since ancient time due to their enormous medicinal use and researcher’s attention have further gone up recently to explore their phytochemical compositions, properties, potential applications in the areas such as, cosmetics, foods etc. In this present study phytochemical analysis have been done on the aqueous and methanolic Moringa leaves extracts using Gas Chromatography-Mass spectrometry (GCMS) and their free radical scavenging potency (FRSP) studied using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical for further applications. GCMS analysis revealed an extraction of range of phytochemicals in aqueous and methanolic extracts. In aqueous, extract constituents found with high percent peak area are Carbonic acid, butyl 2-pentyl ester (20.64%), 2-Isopropoxyethyl propionate (16.87%), Butanedioic acid, 2-hydroxy-2-methyl-, (3.14%) (also known as Citramalic acid that has been rarely detected in plant extracts) and many other phytochemicals were detected. Similarly, fifty-four bio components detected in methanolic extract of Moringa leaves, which were relatively higher than the aqueous extract. Few major compounds found with high percent peak area are 1,3-Propanediol, 2-ethyl-2- (hydroxymethyl)- (21.19%), Propionic acid, 2-methyl-, octyl ester (15.02%), Ethanamine, N-ethyl-N-nitroso- (5.21%), and 9,12,15-Octadecatrienoic acid etc. FRSP for methanolic extract was also recorded much higher than aqueous extract. The half-maximal inhibitory concentration (IC50) of Moringa aqueous extract observed is 4.65 µl/ml and for methanolic extract 1.83 µl/ml. These extracts can act as very powerful antioxidants, anti-inflammatory ingredient for various applications in diverse field of food, cosmetics, medicine etc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号