首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2550篇
  免费   147篇
  国内免费   74篇
  2023年   29篇
  2022年   33篇
  2021年   79篇
  2020年   94篇
  2019年   68篇
  2018年   94篇
  2017年   82篇
  2016年   90篇
  2015年   81篇
  2014年   124篇
  2013年   256篇
  2012年   63篇
  2011年   77篇
  2010年   94篇
  2009年   114篇
  2008年   127篇
  2007年   134篇
  2006年   112篇
  2005年   83篇
  2004年   92篇
  2003年   99篇
  2002年   85篇
  2001年   72篇
  2000年   65篇
  1999年   75篇
  1998年   42篇
  1997年   37篇
  1996年   39篇
  1995年   32篇
  1994年   32篇
  1993年   27篇
  1992年   25篇
  1991年   16篇
  1990年   17篇
  1989年   19篇
  1988年   8篇
  1987年   18篇
  1986年   9篇
  1985年   18篇
  1984年   20篇
  1983年   10篇
  1982年   17篇
  1980年   12篇
  1979年   4篇
  1978年   10篇
  1977年   4篇
  1976年   7篇
  1975年   7篇
  1974年   4篇
  1971年   4篇
排序方式: 共有2771条查询结果,搜索用时 357 毫秒
71.
PurposeThis work compares Monte Carlo dose calculations performed using the RayStation treatment planning system against data measured on a Varian Truebeam linear accelerator with 6 MV and 10 MV FFF photon beams.MethodsThe dosimetric performance of the RayStation Monte Carlo calculations was evaluated in a variety of irradiation geometries employing homogeneous and heterogeneous phantoms. Profile and depth dose comparisons against measurement were carried out in relative mode using the gamma index as a quantitative measure of similarity within the central high dose regions.ResultsThe results demonstrate that the treatment planning system dose calculation engine agrees with measurement to within 2%/1 mm for more than 95% of the data points in the high dose regions for all test cases. A systematic underestimation was observed at the tail of the profile penumbra and out of field, with mean differences generally <0.5 mm or 1% of curve dose maximum respectively. Out of field agreement varied between evaluated beam models.ConclusionsThe RayStation implementation of photon Monte Carlo dose calculations show good agreement with measured data for the range of scenarios considered in this work and is deemed sufficiently accurate for introduction into clinical use.  相似文献   
72.
PurposeMulticellular tumor spheroids are realistic in-vitro systems used in radiation biology research to study the effect of anticancer drugs or to evaluate the resistance of cancer cells under specific conditions. When combining the modeling of spheroids together with the simulation of radiation using Monte Carlo methods, one could estimate cell and DNA damage to be compared with experimental data. We developed a Cell Population (CPOP) modeler combined to Geant4 simulations in order to tackle how energy depositions are allocated to cells, especially when enhancing radiation outcomes using high-Z nanoparticles. CPOP manages to model large three-dimensional cell populations with independent deformable cells described with their nucleus, cytoplasm and membranes together with force law systems to manage cell–cell interactions.MethodsCPOP is an opensource platform written in C++. It is divided into two main libraries: a “Modeler” library, for cell geometry modeling using meshes, and a Multi Agent System (MAS) library, simulating all agent (cell) interactions among the population. CPOP is fully interfaced with the Geant4 Monte Carlo toolkit and is able to directly launch Geant4 simulations after compilation.We modeled a full and realistic 3D cell population from SK-MEL28 melanoma cell population cultured experimentally. The spheroid diameter of 550 ± 40 µm corresponds to a population of approximately 1000 cells having a diameter of 17.2 ± 2.5 µm and a nucleus diameter of 11.2 ± 2.0 µm. We decided to reproduce cell irradiations performed with a X-RAD 320 Biological Irradiator (Precision XRay Inc., North Branford, CT).ResultsWe simulated the energy spectrum of secondary particles generated in the vicinity of the spheroid and plotted the different energy spectra recovered internally to the spheroid. We evaluated also the impact of AGuIX (Gadolinium) nanoparticles modeled into the spheroid with their corresponding secondary energy spectra.ConclusionsWe succeeded into modeling cell populations and combined them with Geant4 simulations. The next step will be to integrate DNA geometrical models into cell nuclei and to use the Geant4-DNA physics and radiolysis modeling capabilities in order to evaluate early strand breaks induced on DNA.  相似文献   
73.
In this study, we present an adaptive anisotropic finite element method (FEM) and demonstrate how computational efficiency can be increased when applying the method to the simulation of blood flow in the cardiovascular system. We use the SUPG formulation for the transient 3D incompressible Navier–Stokes equations which are discretised by linear finite elements for both the pressure and the velocity field.

Given the pulsatile nature of the flow in blood vessels we have pursued adaptivity based on the average flow over a cardiac cycle. Error indicators are derived to define an anisotropic mesh metric field. Mesh modification algorithms are used to anisotropically adapt the mesh according to the desired size field. We demonstrate the efficiency of the method by first applying it to pulsatile flow in a straight cylindrical vessel and then to a porcine aorta with a stenosis bypassed by a graft. We demonstrate that the use of an anisotropic adaptive FEM can result in an order of magnitude reduction in computing time with no loss of accuracy compared to analyses obtained with uniform meshes.  相似文献   
74.
The breakage or distortion of cellular structures is one of the biggest problems in creating micro-sections for wood anatomical analyses in tree-ring as well as other branches of anatomical research. These broken or distorted structures cause artifacts in photomicrographs that require time consuming image manipulation or corrections prior to further analyses. The simple application of a cornstarch, water, and glycerol (CWG) solution (10:8:7 ratio), a so called non-Newtonian fluid to the surface of wooden specimen before sectioning improves the overall quality of the resulting micro-sections. In particular the problem of secondary cell walls splitting off the primary wall while sectioning is drastically reduced. The quality of the sections using this solution is comparable to that obtained from the more laborious and expensive paraffin embedding.  相似文献   
75.
Summary

Firstly, the author describes the anatomical and histological structures of Mimosa pudica L. during the stages of development of the young plant prior to the appearing of cambium. She then discusses, in the light of previous literature on the subject, the three principal features of Mimosa pudica: herbaceous bearing, stable tetrarchy with intercotyledonal bundles along the plumule, and small sized germination.

Finally, the author concludes that Mimosa pudica appears to be an individual with tree-like rather than herbaceous symmetry (stable tetrarchy), in which the size of germination has diminished parallelly to reduction in size of the adult individual.  相似文献   
76.

Background

In radiation therapy with orthovoltage units, the tube design has a crucial effect on its dosimetric features.

Aim

In this study, the effect of anode angle on photon beam spectra, depth dose and photon fluence per initial electron was studied for a commercial orthovoltage unit of X-RAD320 biological irradiator.

Materials and methods

The MCNPX MC code was used for modeling in the current study. We used the Monte Carlo method to model the X-RAD320 X-ray unit based on the manufacturer provided information. The MC model was validated by comparing the MC calculated photon beam spectra with the results of SpekCalc software. The photon beam spectra were calculated for anode angles from 15 to 35 degrees. We also calculated the percentage depth doses for some angles to verify the impact of anode angle on depth dose. Additionally, the heel effect and its relation with anode angle were studied for X-RAD320 irradiator.

Results

Our results showed that the photon beam spectra and their mean energy are changed significantly with anode angle and the optimum anode angle of 30 degrees was selected based on less heel effect and appropriate depth dose and photon fluence per initial electron.

Conclusion

It can be concluded that the anode angle of 30 degrees for X-RAD320 unit used by manufacturer has been selected properly considering the heel effect and dosimetric properties.  相似文献   
77.
Platelets are the fundamental players in primary hemostasis, but are also involved in several pathological conditions. The remarkable advances in proteomic methodologies have allowed a better understanding of the basic physiological pathways underlying platelet biology. In addition, recent platelet proteomics focused on disease conditions, helping to elucidate the molecular mechanisms of complex and/or unknown human disorders and to find novel biomarkers for early diagnosis and drug targets. The most common and innovative proteomic techniques, both gel-based and gel-free, used in platelet proteomics will be reviewed here. A particular focus will be given to studies that used a subproteomic strategy to analyze specific platelet conditions (resting or activated), compartments (membrane, granules and microparticles) or fractions (phosphoproteome or glycoproteome). The thousands of platelet proteins and interactions discovered so far by these different powerful proteomic approaches represent a precious source of information for both basic science and clinical applications in the field of platelet biology.  相似文献   
78.
Ultraviolet radiation (UV) therapy is sometimes used as a treatment for various common skin conditions, including psoriasis, acne, and eczema. The dosage of UV light is prescribed according to an individual''s skin sensitivity. Thus, to establish the proper dosage of UV light to administer to a patient, the patient is sometimes screened to determine a minimal erythema dose (MED), which is the amount of UV radiation that will produce minimal erythema (sunburn or redness caused by engorgement of capillaries) of an individual''s skin within a few hours following exposure. This article describes how to conduct minimal erythema dose (MED) testing. There is currently no easy way to determine an appropriate UV dose for clinical or research purposes without conducting formal MED testing, requiring observation hours after testing, or informal trial and error testing with the risks of under- or over-dosing. However, some alternative methods are discussed.  相似文献   
79.
The unique electronic properties and high surface-to-volume ratios of single-walled carbon nanotubes (SWNT) and semiconductor nanowires (NW) 1-4 make them good candidates for high sensitivity biosensors. When a charged molecule binds to such a sensor surface, it alters the carrier density5 in the sensor, resulting in changes in its DC conductance. However, in an ionic solution a charged surface also attracts counter-ions from the solution, forming an electrical double layer (EDL). This EDL effectively screens off the charge, and in physiologically relevant conditions ~100 millimolar (mM), the characteristic charge screening length (Debye length) is less than a nanometer (nm). Thus, in high ionic strength solutions, charge based (DC) detection is fundamentally impeded6-8.We overcome charge screening effects by detecting molecular dipoles rather than charges at high frequency, by operating carbon nanotube field effect transistors as high frequency mixers9-11. At high frequencies, the AC drive force can no longer overcome the solution drag and the ions in solution do not have sufficient time to form the EDL. Further, frequency mixing technique allows us to operate at frequencies high enough to overcome ionic screening, and yet detect the sensing signals at lower frequencies11-12. Also, the high transconductance of SWNT transistors provides an internal gain for the sensing signal, which obviates the need for external signal amplifier.Here, we describe the protocol to (a) fabricate SWNT transistors, (b) functionalize biomolecules to the nanotube13, (c) design and stamp a poly-dimethylsiloxane (PDMS) micro-fluidic chamber14 onto the device, and (d) carry out high frequency sensing in different ionic strength solutions11.  相似文献   
80.
Stroke is a leading cause of death, disability, and socioeconomic loss worldwide. The majority of all strokes result from an interruption in blood flow (ischemia) 1. Middle cerebral artery (MCA) delivers a great majority of blood to the lateral surface of the cortex 2, is the most common site of human stroke 3, and ischemia within its territory can result in extensive dysfunction or death 1,4,5. Survivors of ischemic stroke often suffer loss or disruption of motor capabilities, sensory deficits, and infarct. In an effort to capture these key characteristics of stroke, and thereby develop effective treatment, a great deal of emphasis is placed upon animal models of ischemia in MCA.Here we present a method of permanently occluding a cortical surface blood vessel. We will present this method using an example of a relevant vessel occlusion that models the most common type, location, and outcome of human stroke, permanent middle cerebral artery occlusion (pMCAO). In this model, we surgically expose MCA in the adult rat and subsequently occlude via double ligature and transection of the vessel. This pMCAO blocks the proximal cortical branch of MCA, causing ischemia in all of MCA cortical territory, a large portion of the cortex. This method of occlusion can also be used to occlude more distal portions of cortical vessels in order to achieve more focal ischemia targeting a smaller region of cortex. The primary disadvantages of pMCAO are that the surgical procedure is somewhat invasive as a small craniotomy is required to access MCA, though this results in minimal tissue damage. The primary advantages of this model, however, are: the site of occlusion is well defined, the degree of blood flow reduction is consistent, functional and neurological impairment occurs rapidly, infarct size is consistent, and the high rate of survival allows for long-term chronic assessment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号