首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1566篇
  免费   91篇
  国内免费   16篇
  2023年   16篇
  2022年   5篇
  2021年   47篇
  2020年   62篇
  2019年   36篇
  2018年   62篇
  2017年   46篇
  2016年   68篇
  2015年   50篇
  2014年   66篇
  2013年   172篇
  2012年   37篇
  2011年   39篇
  2010年   57篇
  2009年   56篇
  2008年   71篇
  2007年   75篇
  2006年   71篇
  2005年   56篇
  2004年   61篇
  2003年   60篇
  2002年   60篇
  2001年   50篇
  2000年   52篇
  1999年   53篇
  1998年   27篇
  1997年   27篇
  1996年   29篇
  1995年   20篇
  1994年   17篇
  1993年   16篇
  1992年   11篇
  1991年   7篇
  1990年   6篇
  1989年   13篇
  1988年   4篇
  1987年   6篇
  1986年   3篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   8篇
  1980年   7篇
  1978年   7篇
  1976年   5篇
  1975年   7篇
  1974年   4篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
排序方式: 共有1673条查询结果,搜索用时 15 毫秒
101.
Summary The cellular dynamics of HIV interaction with the immune system is explored in three-dimensions using a direct Monte Carlo simulation. Viral mutation with probability, Pmut, is considered with immobile and mobile cells. With immobile cells, the viral population becomes larger than that of the helper cells beyond a latency period Tcrit and above a mutation threshold Pcrit. That is at Pmut ≥ Pcrit, { }, with γ ⋍ 0.73 in three dimensions and γ ⋍ 0.88 in 2-D. Very little difference in Pcrit is observed between two and three dimensions. With mobile cells, no power-law is observed for the period of latency, but the difference in Pcrit between two and three dimensions is increased. The time-dependency of the density difference between Viral and Helper cell populations (ρV − ρH) is explored and follows the basic pattern of an immune response to infection. This is markedly more defined than in the 2-D case, where no clear pattern emerges.  相似文献   
102.
For the structure and function of proteins, the pH of the solution is one of the determining parameters. Current molecular dynamics (MD) simulations account for the solution pH only in a limited way by keeping each titratable site in a chosen protonation state. We present an algorithm that generates trajectories at a Boltzmann distributed ensemble of protonation states by a combination of MD and Monte Carlo (MC) simulation. The algorithm is useful for pH-dependent structural studies and to investigate in detail the titration behavior of proteins. The method is tested on the acidic residues of the protein hen egg white lysozyme. It is shown that small structural changes may have a big effect on the pK(A) values of titratable residues.  相似文献   
103.
Favrin G  Irbäck A  Wallin S 《Proteins》2002,47(2):99-105
A reduced protein model with five to six atoms per amino acid and five amino acid types is developed and tested on a three-helix-bundle protein, a 46-amino acid fragment from staphylococcal protein A. The model does not rely on the widely used Go approximation, which ignores non-native interactions. We find that the collapse transition is considerably more abrupt for the protein A sequence than for random sequences with the same composition. The chain collapse is found to be at least as fast as helix formation. Energy minimization restricted to the thermodynamically favored topology gives a structure that has a root-mean-square deviation of 1.8 A from the native structure. The sequence-dependent part of our potential is pairwise additive. Our calculations suggest that fine-tuning this potential by parameter optimization is of limited use.  相似文献   
104.
Monte Carlo simulations of molecular recognition at the consensus binding site of the constant fragment (Fc) of human immunoglobulin G (Ig) protein have been performed to analyze structural and thermodynamic aspects of binding for the 13-residue cyclic peptide DCAWHLGELVWCT. The energy landscape analysis of a hot spot at the intermolecular interface using alanine scanning and equilibrium-simulated tempering dynamics with the simplified, knowledge-based energy function has enabled the role of the protein hot spot residues in providing the thermodynamic stability of the native structure to be determined. We have found that hydrophobic interactions between the peptide and the Met-252, Ile-253, His-433, and His-435 protein residues are critical to guarantee the thermodynamic stability of the crystallographic binding mode of the complex. Binding free energy calculations, using a molecular mechanics force field and a solvation energy model, combined with alanine scanning have been conducted to determine the energetic contribution of the protein hot spot residues in binding affinity. The conserved Asn-434, Ser-254, and Tyr-436 protein residues contribute significantly to the binding affinity of the peptide-protein complex, serving as an energetic hot spot at the intermolecular interface. The results suggest that evolutionary conserved hot spot protein residues at the intermolecular interface may be partitioned in fulfilling thermodynamic stability of the native binding mode and contributing to the binding affinity of the complex.  相似文献   
105.
We develop a new class of models, dynamic conditionally linear mixed models, for longitudinal data by decomposing the within-subject covariance matrix using a special Cholesky decomposition. Here 'dynamic' means using past responses as covariates and 'conditional linearity' means that parameters entering the model linearly may be random, but nonlinear parameters are nonrandom. This setup offers several advantages and is surprisingly similar to models obtained from the first-order linearization method applied to nonlinear mixed models. First, it allows for flexible and computationally tractable models that include a wide array of covariance structures; these structures may depend on covariates and hence may differ across subjects. This class of models includes, e.g., all standard linear mixed models, antedependence models, and Vonesh-Carter models. Second, it guarantees the fitted marginal covariance matrix of the data is positive definite. We develop methods for Bayesian inference and motivate the usefulness of these models using a series of longitudinal depression studies for which the features of these new models are well suited.  相似文献   
106.
Lam KF  Lee YW  Leung TL 《Biometrics》2002,58(2):316-323
In this article, the focus is on the analysis of multivariate survival time data with various types of dependence structures. Examples of multivariate survival data include clustered data and repeated measurements from the same subject, such as the interrecurrence times of cancer tumors. A random effect semiparametric proportional odds model is proposed as an alternative to the proportional hazards model. The distribution of the random effects is assumed to be multivariate normal and the random effect is assumed to act additively to the baseline log-odds function. This class of models, which includes the usual shared random effects model, the additive variance components model, and the dynamic random effects model as special cases, is highly flexible and is capable of modeling a wide range of multivariate survival data. A unified estimation procedure is proposed to estimate the regression and dependence parameters simultaneously by means of a marginal-likelihood approach. Unlike the fully parametric case, the regression parameter estimate is not sensitive to the choice of correlation structure of the random effects. The marginal likelihood is approximated by the Monte Carlo method. Simulation studies are carried out to investigate the performance of the proposed method. The proposed method is applied to two well-known data sets, including clustered data and recurrent event times data.  相似文献   
107.
Empirical supremum rejection sampling   总被引:1,自引:0,他引:1  
  相似文献   
108.
Bayesian Markov chain Monte Carlo sampling has become increasingly popular in phylogenetics as a method for both estimating the maximum likelihood topology and for assessing nodal confidence. Despite the growing use of posterior probabilities, the relationship between the Bayesian measure of confidence and the most commonly used confidence measure in phylogenetics, the nonparametric bootstrap proportion, is poorly understood. We used computer simulation to investigate the behavior of three phylogenetic confidence methods: Bayesian posterior probabilities calculated via Markov chain Monte Carlo sampling (BMCMC-PP), maximum likelihood bootstrap proportion (ML-BP), and maximum parsimony bootstrap proportion (MP-BP). We simulated the evolution of DNA sequence on 17-taxon topologies under 18 evolutionary scenarios and examined the performance of these methods in assigning confidence to correct monophyletic and incorrect monophyletic groups, and we examined the effects of increasing character number on support value. BMCMC-PP and ML-BP were often strongly correlated with one another but could provide substantially different estimates of support on short internodes. In contrast, BMCMC-PP correlated poorly with MP-BP across most of the simulation conditions that we examined. For a given threshold value, more correct monophyletic groups were supported by BMCMC-PP than by either ML-BP or MP-BP. When threshold values were chosen that fixed the rate of accepting incorrect monophyletic relationship as true at 5%, all three methods recovered most of the correct relationships on the simulated topologies, although BMCMC-PP and ML-BP performed better than MP-BP. BMCMC-PP was usually a less biased predictor of phylogenetic accuracy than either bootstrapping method. BMCMC-PP provided high support values for correct topological bipartitions with fewer characters than was needed for nonparametric bootstrap.  相似文献   
109.
The use of survival models involving a random effect or 'frailty' term is becoming more common. Usually the random effects are assumed to represent different clusters, and clusters are assumed to be independent. In this paper, we consider random effects corresponding to clusters that are spatially arranged, such as clinical sites or geographical regions. That is, we might suspect that random effects corresponding to strata in closer proximity to each other might also be similar in magnitude. Such spatial arrangement of the strata can be modeled in several ways, but we group these ways into two general settings: geostatistical approaches, where we use the exact geographic locations (e.g. latitude and longitude) of the strata, and lattice approaches, where we use only the positions of the strata relative to each other (e.g. which counties neighbor which others). We compare our approaches in the context of a dataset on infant mortality in Minnesota counties between 1992 and 1996. Our main substantive goal here is to explain the pattern of infant mortality using important covariates (sex, race, birth weight, age of mother, etc.) while accounting for possible (spatially correlated) differences in hazard among the counties. We use the GIS ArcView to map resulting fitted hazard rates, to help search for possible lingering spatial correlation. The DIC criterion (Spiegelhalter et al., Journal of the Royal Statistical Society, Series B 2002, to appear) is used to choose among various competing models. We investigate the quality of fit of our chosen model, and compare its results when used to investigate neonatal versus post-neonatal mortality. We also compare use of our time-to-event outcome survival model with the simpler dichotomous outcome logistic model. Finally, we summarize our findings and suggest directions for future research.  相似文献   
110.
Monte Carlo random-walk simulations of diffusion in virtual lattices of cells have been used to study and characterize diffusion-coherence phenomena that arise when pulsed field-gradient spin-echo (PGSE) nuclear magnetic resonance (NMR) experiments are conducted on human red blood cell (RBC; erythrocytes) suspensions. These coherence effects are manifest as diffraction-like patterns when the normalized PGSE signal intensities are plotted as a function of the spatial wave vector q in so-called q-space plots. q-Space analysis is sensitive to small changes in cell morphology, cell size, membrane transport rates, hematocrit, and packing arrangement. In the present study we used simulations to predict the effect of varying the time over which diffusion is measured (the "observation time" or "diffusion time") and the permeability of the membrane on the form of q-space plots. Thus we predict that inhibiting water exchange across the human RBC membrane, such that the value of the permeability coefficient is reduced by approximately an order of magnitude below the normal physiological value, will effectively render the membrane impermeable on the timescale of the PGSE NMR experiment; further inhibition will therefore result in negligible reduction in the measured root-mean-square displacement (r.m.s.d.) of diffusing water as a function of the observation time. The work also underscores the importance of using an appropriate experimental observation time if q-space data are to be used to estimate compartment dimensions and interbarrier spacing, and illustrates an expeditious method for determining this value.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号