首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10392篇
  免费   219篇
  国内免费   321篇
  10932篇
  2024年   7篇
  2023年   261篇
  2022年   173篇
  2021年   221篇
  2020年   240篇
  2019年   420篇
  2018年   376篇
  2017年   275篇
  2016年   250篇
  2015年   294篇
  2014年   645篇
  2013年   1091篇
  2012年   636篇
  2011年   567篇
  2010年   343篇
  2009年   502篇
  2008年   532篇
  2007年   524篇
  2006年   380篇
  2005年   377篇
  2004年   338篇
  2003年   284篇
  2002年   231篇
  2001年   186篇
  2000年   150篇
  1999年   181篇
  1998年   180篇
  1997年   164篇
  1996年   179篇
  1995年   142篇
  1994年   115篇
  1993年   72篇
  1992年   74篇
  1991年   58篇
  1990年   61篇
  1989年   48篇
  1988年   25篇
  1987年   40篇
  1986年   19篇
  1985年   43篇
  1984年   30篇
  1983年   28篇
  1982年   44篇
  1981年   27篇
  1980年   15篇
  1979年   28篇
  1978年   12篇
  1977年   10篇
  1976年   12篇
  1975年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Two simple and reliably accessible intermediates, N-carboxypentyl- and N-aminohexyl-1-deoxy-d-galactonojirimycin were employed for the synthesis of a set of terminally N-dansyl substituted derivatives. Reaction of the terminal carboxylic acid of N-carboxypentyl-1-deoxy-d-galactonojirimycin with N-dansyl-1,6-diaminohexane provided the chain-extended fluorescent derivative. Employing bis(6-dansylaminohexyl)amine, the corresponding branched di-N-dansyl compound was obtained. Partially protected N-aminohexyl-1-deoxy-d-galactonojirimycin served as intermediate for two additional chain-extended fluorescent 1-deoxy-d-galactonojirimycin (1-DGJ) derivatives featuring terminal dansyl groups in the N-alkyl substituent. These new compounds are strong inhibitors of d-galactosidases and may serve as leads en route to pharmacological chaperones for GM1-gangliosidosis.  相似文献   
42.
Collagen is an attractive marker for tissue remodeling in a variety of common disease processes. Here we report the preparation of protein dendrimers as multivalent collagen targeting ligands by native chemical ligation of the collagen binding protein CNA35 to cysteine-functionalized dendritic divalent (AB2) and tetravalent (AB4) wedges. The binding of these multivalent protein constructs was studied on collagen-immobilized chip surfaces as well as to native collagen in rat intestinal tissues. To understand the importance of target density we also created collagen-mimicking surfaces by immobilizing synthetic collagen triple helical peptides at various densities on a chip surface. Multivalent display of a weak-binding variant (CNA35-Y175K) resulted in a large increase in collagen affinity, effectively restoring the collagen imaging capacities for the AB4 system. In addition, dissociation of these multivalent CNA35 dendrimers from collagen surfaces was found to be strongly attenuated.  相似文献   
43.
In structure-based drug design, the basic goal is to design molecules that fit complementarily to a given binding pocket. Since such computationally modeled molecules may not adopt the intended bound conformation outside the binding pocket, one challenge is to ensure that the designed ligands adopt similar low energy conformations both inside and outside of the binding pocket. Computational chemistry methods and conformational preferences of small molecules from PDB and Cambridge Structural Database (CSD) can be used to predict the bound structures of the designed molecules. Herein, we review applications of conformational control in structure-based drug design using selected examples from the recent medicinal chemistry literature. The main purpose is to highlight some intriguing conformational features that can be applied to other drug discovery programs.  相似文献   
44.
The heterodimerization of WT Cu, Zn superoxide dismutase-1 (SOD1), and mutant SOD1 might be a critical step in the pathogenesis of SOD1-linked amyotrophic lateral sclerosis (ALS). Rates and free energies of heterodimerization (ΔGHet) between WT and ALS-mutant SOD1 in mismatched metalation states—where one subunit is metalated and the other is not—have been difficult to obtain. Consequently, the hypothesis that under-metalated SOD1 might trigger misfolding of metalated SOD1 by “stealing” metal ions remains untested. This study used capillary zone electrophoresis and mass spectrometry to track heterodimerization and metal transfer between WT SOD1, ALS-variant SOD1 (E100K, E100G, D90A), and triply deamidated SOD1 (modeled with N26D/N131D/N139D substitutions). We determined that rates of subunit exchange between apo dimers and metalated dimers—expressed as time to reach 30% heterodimer—ranged from t30% = 67.75 ± 9.08 to 338.53 ± 26.95 min; free energies of heterodimerization ranged from ΔGHet = -1.21 ± 0.31 to -3.06 ± 0.12 kJ/mol. Rates and ΔGHet values of partially metalated heterodimers were more similar to those of fully metalated heterodimers than apo heterodimers, and largely independent of which subunit (mutant or WT) was metal-replete or metal-free. Mass spectrometry and capillary electrophoresis demonstrated that mutant or WT 4Zn-SOD1 could transfer up to two equivalents of Zn2+ to mutant or WT apo-SOD1 (at rates faster than the rate of heterodimerization). This result suggests that zinc-replete SOD1 can function as a chaperone to deliver Zn2+ to apo-SOD1, and that WT apo-SOD1 might increase the toxicity of mutant SOD1 by stealing its Zn2+.  相似文献   
45.
To develop potential agents for slowing the progression of Alzheimer′s disease, two pairs of new enantiomeric lignans, including a couple of rarely 8′,9′-dinor-3′,7-epoxy-8,4′-oxyneolignanes named (7S, 8S)- and (7R, 8R)-pithecellobiumin A (1a/1b) and a pair of 2′,9′-epoxy-arylnaphthalenes named (7R, 8R, 8′R)- and (7S, 8S, 8′S)-pithecellobiumin B (2a/2b) were separated by chiral high performance liquid chromatography (HPLC). Their planar structures were elucidated by spectroscopic data analyses. The absolute configurations were determined by comparing of experimental and calculated electronic circular dichroism (ECD). The inhibitory activity on Aβ aggregation of all optical pure compounds was tested by ThT assay. Interestingly, enantiomeric inhibitors 1a (62.1%) and 1b (81.6%) exhibited different degrees of anti-Aβ aggregation activity. However, 2a (65.4%) and 2b (68.4%) showed similar inhibition rate. The different inhibition profiles were explained by molecular dynamics and docking simulation studies.  相似文献   
46.
The dramatically increasing number of new protein sequences arising from genomics 4 proteomics requires the need for methods to rapidly and reliably infer the molecular and cellular functions of these proteins. One such approach, structural genomics, aims to delineate the total repertoire of protein folds in nature, thereby providing three-dimensional folding patterns for all proteins and to infer molecular functions of the proteins based on the combined information of structures and sequences. The goal of obtaining protein structures on a genomic scale has motivated the development of high throughput technologies and protocols for macromolecular structure determination that have begun to produce structures at a greater rate than previously possible. These new structures have revealed many unexpected functional inferences and evolutionary relationships that were hidden at the sequence level. Here, we present samples of structures determined at Berkeley Structural Genomics Center and collaborators laboratories to illustrate how structural information provides and complements sequence information to deduce the functional inferences of proteins with unknown molecular functions.Two of the major premises of structural genomics are to discover a complete repertoire of protein folds in nature and to find molecular functions of the proteins whose functions are not predicted from sequence comparison alone. To achieve these objectives on a genomic scale, new methods, protocols, and technologies need to be developed by multi-institutional collaborations worldwide. As part of this effort, the Protein Structure Initiative has been launched in the United States (PSI; www.nigms.nih.gov/funding/psi.html). Although infrastructure building and technology development are still the main focus of structural genomics programs [1–6], a considerable number of protein structures have already been produced, some of them coming directly out of semi-automated structure determination pipelines [6–10]. The Berkeley Structural Genomics Center (BSGC) has focused on the proteins of Mycoplasma or their homologues from other organisms as its structural genomics targets because of the minimal genome size of the Mycoplasmas as well as their relevance to human and animal pathogenicity (http://www.strgen.org). Here we present several protein examples encompassing a spectrum of functional inferences obtainable from their three-dimensional structures in five situations, where the inferences are new and testable, and are not predictable from protein sequence information alone.  相似文献   
47.
The genus Abies is distributed discontinuously in the temperate and subtropical montane forests of the northern hemisphere. In Mesoamerica (Mexico and northern Central America), modern firs originated from the divergence of isolated mountain populations of migrating North American taxa. However, the number of ancestral species, migratory waves and diversification speed of these taxa is unknown. Here, variation in repetitive (Pt30204, Pt63718, and Pt71936) and non-repetitive (rbcL, rps18-rpl20 and trnL-trnF) regions of the chloroplast genome was used to reconstruct the phylogenetic relationships of the Mesoamerican Abies in a genus-wide context. These phylogenies and two fossil-calibrated scenarios were further employed to estimate divergence dates and diversification rates within the genus, and to test the hypothesis that, as in many angiosperms, conifers may exhibit accelerated speciation rates in the subtropics. All phylogenies showed five main clusters that mostly agreed with the currently recognized sections of Abies and with the geographic distribution of species. The Mesoamerican taxa formed a single group with species from southwestern North America of sections Oiamel and Grandis. However, populations of the same species were not monophyletic within this group. Divergence of this whole group dated back to the late Paleocene and the early Miocene depending on the calibration used, which translated in very low diversification rates (r0.0 = 0.026-0.054, r0.9 = 0.009-0.019 sp/Ma). Such low rates were a constant along the entire genus, including both the subtropical and temperate taxa. An extended phylogeographic analysis on the Mesoamerican clade indicated that Abies flinckii and A. concolor were the most divergent taxa, while the remaining species (A. durangensis, A. guatemalensis, A. hickelii, A. religiosa and A. vejari) formed a single group. Altogether, these results show that divergence of Mesoamerican firs coincides with a model of environmental stasis and decreased extinction rate, being probably prompted by a series of range expansions and isolation-by-distance.  相似文献   
48.
Although a number of genes expressed in most tissues, including the liver, exhibit circadian regulation, gene expression profiles are usually examined only at one scheduled time each day. In this study, we investigated the effects of obese diabetes on the hepatic mRNA levels of various genes at 6-h intervals over a single 24-h period. Microarray analysis revealed that many genes are expressed rhythmically, not only in control KK mice but also in obese diabetic KK-A(y) mice. Real-time quantitative PCR verified that 19 of 23 putative circadianly expressed genes showed significant 24-h rhythmicity in both strains. However, obese diabetes attenuated these expression rhythms in 10 of 19 genes. More importantly, the effects of obese diabetes were observed throughout the day in only two genes. These results suggest that observation time influences the results of gene expression analyses of genes expressed circadianly.  相似文献   
49.
Cell life depends on the dynamics of molecular processes: molecule folding, organelle building and transformations involving membrane fusion, protein activation and degradation. To carry out these processes, the hydrophilic/hydrophobic interfaces of amphipathic systems such as membranes and native proteins must be disrupted. In the past decade, protein fragments acting in the disruption of interfaces have been evidenced: they are named the tilted or oblique peptides. Due to a peculiar distribution of hydrophobicity, they can disrupt hydrophobicity interfaces. Tilted peptides should be present in many proteins involved in various stages of cell life. This hypothesis overviews their discovery, describes how they are detected and discusses how they could be involved in dynamic biological processes.  相似文献   
50.

Background

Recent advances in DNA sequencing techniques resulted in more than forty sequenced plant genomes representing a diverse set of taxa of agricultural, energy, medicinal and ecological importance. However, gene family curation is often only inferred from DNA sequence homology and lacks insights into evolutionary processes contributing to gene family dynamics. In a comparative genomics framework, we integrated multiple lines of evidence provided by gene synteny, sequence homology and protein-based Hidden Markov Modelling to extract homologous super-clusters composed of multi-domain resistance (R)-proteins of the NB-LRR type (for NUCLEOTIDE BINDING/LEUCINE-RICH REPEATS), that are involved in plant innate immunity.

Results

To assess the diversity of R-proteins within and between species, we screened twelve eudicot plant genomes including six major crops and found a total of 2,363 NB-LRR genes. Our curated R-proteins set shows a 50% average for tandem duplicates and a 22% fraction of gene copies retained from ancient polyploidy events (ohnologs). We provide evidence for strong positive selection and show significant differences in molecular evolution rates (Ka/Ks-ratio) among tandem- (mean = 1.59), ohnolog (mean = 1.36) and singleton (mean = 1.22) R-gene duplicates. To foster the process of gene-edited plant breeding, we report species-specific presence/absence of all 140 NB-LRR genes present in the model plant Arabidopsis and describe four distinct clusters of NB-LRR “gatekeeper” loci sharing syntenic orthologs across all analyzed genomes.

Conclusion

By curating a near-complete set of multi-domain R-protein clusters in an eudicot-wide scale, our analysis offers significant insight into evolutionary dynamics underlying diversification of the plant innate immune system. Furthermore, our methods provide a blueprint for future efforts to identify and more rapidly clone functional NB-LRR genes from any plant species.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-966) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号