首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11764篇
  免费   391篇
  国内免费   340篇
  12495篇
  2024年   18篇
  2023年   369篇
  2022年   192篇
  2021年   272篇
  2020年   363篇
  2019年   587篇
  2018年   490篇
  2017年   414篇
  2016年   388篇
  2015年   320篇
  2014年   673篇
  2013年   1334篇
  2012年   650篇
  2011年   620篇
  2010年   385篇
  2009年   558篇
  2008年   610篇
  2007年   586篇
  2006年   428篇
  2005年   416篇
  2004年   369篇
  2003年   302篇
  2002年   233篇
  2001年   173篇
  2000年   152篇
  1999年   185篇
  1998年   192篇
  1997年   167篇
  1996年   169篇
  1995年   142篇
  1994年   117篇
  1993年   69篇
  1992年   61篇
  1991年   57篇
  1990年   60篇
  1989年   42篇
  1988年   23篇
  1987年   41篇
  1986年   19篇
  1985年   35篇
  1984年   27篇
  1983年   27篇
  1982年   37篇
  1981年   25篇
  1980年   15篇
  1979年   28篇
  1978年   12篇
  1977年   8篇
  1976年   12篇
  1975年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Forty-six accessions of grapevine (V. vinifera L.) were compared by restriction fragment length polmorphism (RFLP) analysis, and 111 informative or unique restriction fragments were found that revealed an important level of polymorphism. RFLP patterns were compared in two ways: by calculating electrophoretic similarity degree values further analyzed by principal component analysis and by studying the distribution of rare restriction fragments. Six taxonomic groups could be defined, which partially confirmed relationships derived from ampelographical data. Our data support the existence of ecogeographical groups.  相似文献   
32.
Conformational dynamics is crucial for ribonucleic acid (RNA) function. Techniques such as nuclear magnetic resonance, cryo-electron microscopy, small- and wide-angle X-ray scattering, chemical probing, single-molecule Förster resonance energy transfer, or even thermal or mechanical denaturation experiments probe RNA dynamics at different time and space resolutions. Their combination with accurate atomistic molecular dynamics (MD) simulations paves the way for quantitative and detailed studies of RNA dynamics. First, experiments provide a quantitative validation tool for MD simulations. Second, available data can be used to refine simulated structural ensembles to match experiments. Finally, comparison with experiments allows for improving MD force fields that are transferable to new systems for which data is not available. Here we review the recent literature and provide our perspective on this field.  相似文献   
33.
Summary A new method, a restrained Monte Carlo (rMC) calculation, is demonstrated for generating high-resolution structures of DNA oligonucleotides in solution from interproton distance restraints and bounds derived from complete relaxation matrix analysis of two-dimensional nuclear Overhauser effect (NOE) spectral peak intensities. As in the case of restrained molecular dynamics (rMD) refinement of structures, the experimental distance restraints and bounds are incorporated as a pseudo-energy term (or penalty function) into the mathematical expression for the molecular energy. However, the use of generalized helical parameters, rather than Cartesian coordinates, to define DNA conformation increases efficiency by decreasing by an order of magnitude the number of parameters needed to describe a conformation and by simplifying the potential energy profile. The Metropolis Monte Carlo method is employed to simulate an annealing process. The rMC method was applied to experimental 2D NOE data from the octamer duplex d(GTA-TAATG)·d(CATTATAC). Using starting structures from different locations in conformational space (e.g. A-DNA and B-DNA), the rMC calculations readily converged, with a root-mean-square deviation (RMSD) of <0.3 Å between structures generated using different protocols and starting structures. Theoretical 2D NOE peak intensities were calculated for the rMC-generated structures using the complete relaxation matrix program CORMA, enabling a comparison with experimental intensities via residual indices. Simulation of the vicinal proton coupling constants was carried out for the structures generated, enabling a comparison with the experimental deoxyribose ring coupling constants, which were not utilized in the structure determination in the case of the rMC simulations. Agreement with experimental 2D NOE and scalar coupling data was good in all cases. The rMC structures are quite similar to that refined by a traditional restrained MD approach (RMSD<0.5 Å) despite the different force fields used and despite the fact that MD refinement was conducted with additional restraints imposed on the endocyclic torsion angles of deoxyriboses. The computational time required for the rMC and rMD calculations is about the same. A comparison of structural parameters is made and some limitations of both methods are discussed with regard to the average nature of the experimental restraints used in the refinement.Abbreviations MC Monte Carlo - rMC restrained Monte Carlo - MD molecular dynamics - rMD restrained molecular dynamics - DG distance geometry - EM energy minimization - 2D NOE two-dimensional nuclear Overhauser effect - DQF-COSY double-quantum-filtered correlation spectroscopy - RMSD root-mean-square deviation To whom correspondence should be addressed.  相似文献   
34.
Herein, we report the design, synthesis and evaluation of novel (E)-3-(3-oxo-4-substituted-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-N-hydroxypropenamides ( 4 a – i , 7 a – g ) targeting histone deacetylases. Three human cancer cell lines were used to test the cytotoxicity of the synthesized compounds (SW620, colon; PC-3, prostate; NCI−H23, lung cancer); inhibitory activity towards HDAC; anticancer activity; as well as their impact on the cell cycle and apoptosis. As a result, compounds 4 a – i bearing the alkyl substituents seemed to be less potent than the benzyl-containing compounds 7 a – g in all biological assays. Compounds 7 e – f were found to be the most active HDAC inhibitors with IC50 of 1.498±0.020 μM and 1.794±0.159 μM, respectively. In terms of cytotoxicity and anticancer assay, 7 e and 7 f also showed good activity with IC50 values in the micromolar range. In addition, the cell cycle and apoptosis of SW620 were affected by compound 7 f in almost a similar manner to that of reference compound SAHA. Docking assays were carried out for analysis the binding mode and selectivity of this compound toward 8 HDAC isoforms. Overall, our data confirmed that the inhibition of HDAC plays a pivotal role in their anticancer activity.  相似文献   
35.
Mn(II) and Co(II) complexes of methyl-(Z)−N′-carbamothioylcarbamohydrazonate Schiff base ligand were synthesized. The ligand and metal salts were taken in 2 : 1 stoichiometric ratio. All the synthesized complexes were characterized using elemental analysis, molar conductance, magnetic moment and various spectroscopic techniques (FT-IR, UV/VIS, EPR) techniques. Elemental and spectroscopic results verified bidentate donor nature of the ligand and octahedral geometry of all the complexes. The non-electrolytic nature of Mn(II) and Co(II) complexes were suggested by conductivity data analysis. In vitro antibacterial (E. coli and S. aureus) and antifungal (C. albicans and C. tropicalis) screening were achieved by employing agar well diffusion method which revealed better antimicrobial activity of Co(II) complexes than Mn(II) complexes. In silico SwissADME study predicted the drug-likeness probability of ligand and complexes. The interaction of two bacterial proteins (E. coli and S. aureus) with compounds was also analyzed using molecular docking study, which corroborate the in vitro analysis.  相似文献   
36.
The completion of the genome sequence of the budding yeast Saccharomyces cerevisiae marks the dawn of an exciting new era in eukaryotic biology that will bring with it a new understanding of yeast, other model organisms, and human beings. This body of sequence data benefits yeast researchers by obviating the need for piecemeal sequencing of genes, and allows researchers working with other organisms to tap into experimental advantages inherent in the yeast system and learn from functionally characterized yeast gene products which are their proteins of interest. In addition, the yeast post-genome sequence era is serving as a testing ground for powerful new technologies, and proven experimental approaches are being applied for the first time in a comprehensive fashion on a complete eukaryotic gene repertoire.  相似文献   
37.
Summary The ability of time-averaged restrained molecular dynamics (TARMD) to escape local low-energy conformations and explore conformational space is compared with conventional simulated-annealing methods. Practical suggestions are offered for performing TARMD calculations with ligand-receptor systems, and are illustrated for the complex of the immunosuppressant FK506 bound to Q50R,A95H,K98I triple mutant FKBP-13. The structure of 13C-labeled FK506 bound to triple-mutant FKBP-13 was determined using a set of 87 NOE distance restraints derived from HSQC-NOESY experiments. TARMD was found to be superior to conventional simulated-annealing methods, and produced structures that were conformationally similar to FK506 bound to wild-type FKBP-12. The individual and combined effects of varying the NOE restraint force constant, using an explicit model for the protein binding pocket, and starting the calculations from different ligand conformations were explored in detail.Abbreviations DG distance geometry - dmFKBP-12 double-mutant (R42K,H87V) FKBP-12 - FKBP-12 FK506-binding protein (12 kDa) - FKBP-13 FK506-binding protein (13 kDa) - HSQC heteronuclear single-quantum coherence - KNOE force constant (penalty) for NOE-derived distance restraints - MD molecular dynamics - NOE nuclear Overhauser effect - SA simulated annealing - TARMD molecular dynamics with time-averaged restraints - tmFKBP-13 triple-mutant (Q50R,A95H,K98I) FKBP-13 - wtFKBP-12 wild-type FKBP-12  相似文献   
38.
Summary A new program for molecular dynamics (MD) simulation and energy refinement of biological macromolecules, OPAL, is introduced. Combined with the supporting program TRAJEC for the analysis of MD trajectories, OPAL affords high efficiency and flexibility for work with diferent force fields, and offers a user-friendly interface and extensive trajectory analysis capabilities. Salient features are computational speeds of up to 1.5 GFlops on vector supercomputers such as the NEC SX-3, ellipsoidal boundaries to reduce the system size for studies in explicit solvents, and natural treatment of the hydrostatic pressure. Practical applications of OPAL are illustrated with MD simulations of pure water, energy minimization of the NMR structure of the mixed disulfide of a mutant E. coli glutaredoxin with glutathione in different solvent models, and MD simulations of a small protein, pheromone Er-2, using either instantaneous or time-averaged NMR restraints, or no restraints.Abbreviations D diffusion constant in cm2/s - Er-2 pheromone 2 from Euplotes raikovi - GFlop one billion floating point operations per second - Grx(C14S)-SG mixed disulfide between a mutant E. coli glutaredoxin, with Cys14 replaced by Ser, and glutathione - MD molecular dynamics - NOE nuclear Overhauser enhancement - rmsd root-mean-square deviation - density in g/cm3  相似文献   
39.
Summary Two modifications to the commonly used protocols for calculating NMR structures are developed, relating to the treatment of NOE constraints involving groups of equivalent protons or nonstereoassigned diastereotopic protons. Firstly, a modified method is investigated for correcting for multiplicity, which is applicable whenever all NOE intensities are calibrated as a single set and categorised in broad intensity ranges. Secondly, a new set of values for pseudoatom corrections is proposed for use with calculations employing centre-averaging. The effect of these protocols on structure calculations is demonstrated using two proteins, one of which is well defined by the NOE data, the other less so. It is shown that failure to correct for multiplicity when using r-6 averaging results in overly precise structures, higher NOE energies and deviations from geometric ideality, while failure to correct for multiplicity when using r-6 summation can cause an avoidable degradation of precision if the NOE data are sparse. Conversely, when multiplicities are treated correctly, r-6 averaging, r-6 summation and centre averaging all give closely comparable results when the structure is well defined by the data. When the NOE data contain less information, r-6 averaging or r-6 summation offer a significant advantage over centre averaging, both in terms of precision and in terms of the proportion of calculations that converge on a consisten result.Abbreviations HMG high mobility group - NOE nuclear Overhauser enhancement - NOESY nuclear Overhauser enhancement spectroscopy - rmsd root-mean-square deviation - YASAP yet another simulated-annealing protocol  相似文献   
40.
A subtractive-hybridization technique, combined with differential screenings and subsequent whole mount in situ hybridization (ISH) reactions, was used to isolate novel cDNA clones representing developmentally-regulated genes of carp. Small-scale differential screenings of an oocyte and a segmentation-stage cDNA library using oocyte-specific and segmentation stage-specific enriched probes, yielded 75 positive clones. ISH screening showed that 65% (15) of the oocyte-stage clones and 50% (26) of the segmentation-stage clones were indeed stage-specific. Partial sequence analysis suggests that approximately 65% of the 41 stage-specific clones represent novel genes. In addition, an Otxl clone was isolated. Two novel clones and the Otxl clone are of special interest for developmental studies. The clones represent genes that are locally expressed during embryonic development. The expression patterns of Otxl and one of the novel clones suggest functions in specification of the anterior-posterior axis. The three clones provide molecular markers for the study of gastrulation and the patterning of the a-p axis in teleosts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号