首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   340篇
  免费   42篇
  国内免费   24篇
  2024年   1篇
  2023年   9篇
  2022年   16篇
  2021年   26篇
  2020年   17篇
  2019年   22篇
  2018年   23篇
  2017年   22篇
  2016年   23篇
  2015年   22篇
  2014年   44篇
  2013年   35篇
  2012年   22篇
  2011年   14篇
  2010年   11篇
  2009年   16篇
  2008年   17篇
  2007年   4篇
  2006年   10篇
  2005年   8篇
  2004年   7篇
  2003年   8篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   4篇
  1994年   2篇
  1992年   2篇
  1991年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
排序方式: 共有406条查询结果,搜索用时 203 毫秒
91.
Tissue and stem cell encapsulation andtransplantation were considered as promising tools in the treatment of patients with diabetes mellitus. The aim of this study was to evaluate the effect of microfluidic encapsulation on the differentiation of trabecular meshwork mesenchymal stem cells (TM-MSC), into insulin-producing cells (IPCs) both in vitro and in vivo. The presence of differentiated cells in microfibers (three dimensional [3D]) and tissue culture plates (TCPS; two dimensional [2D]) culture was evaluated by detecting mRNA and protein expression of pancreatic islet-specific markers as well as measuring insulin release of cells in response to glucose challenges. Finally, semi-differentiated cells in microfibers (3D) and 2D cultures were used to control the glucose level in diabetic rats. The results of this study showed that MSCs differentiated in alginate microfibers (fabricated by microfluidic device) express more Pdx-1 mRNA (1.938-fold, p-value: 0.0425) and Insulin mRNA (2.841-fold, p-value: 0.0001) compared with those cultured on TCPS. Furthermore, cell encapsulation in microfluidic derived microfibers decreased the level of blood glucose in diabetic rats. The approach used in this study showed the possibility of alginate microfibers as a matrix for differentiation of TM-MSCs (as a new source) into IPCs. In addition, it could minimize different steps in stem cell differentiation, handling, and encapsulation, which lead to loss of an unlimited number of cells.  相似文献   
92.
Growing cells adjust their division time with biomass accumulation to maintain growth homeostasis. Size control mechanisms, such as the size checkpoint, provide an inherent coupling of growth and division by gating certain cell cycle transitions based on cell size. We describe genetic manipulations that decouple cell division from cell size, leading to the loss of growth homeostasis, with cells becoming progressively smaller or progressively larger until arresting. This was achieved by modulating glucose influx independently of external glucose. Division rate followed glucose influx, while volume growth was largely defined by external glucose. Therefore, the coordination of size and division observed in wild‐type cells reflects tuning of two parallel processes, which is only refined by an inherent feedback‐dependent coupling. We present a class of size control models explaining the observed breakdowns of growth homeostasis.  相似文献   
93.
Diseases are an emerging threat to ocean ecosystems. Coral reefs, in particular, are experiencing a worldwide decline because of disease and bleaching, which have been exacerbated by rising seawater temperatures. Yet, the ecological mechanisms behind most coral diseases remain unidentified. Here, we demonstrate that a coral pathogen, Vibrio coralliilyticus, uses chemotaxis and chemokinesis to target the mucus of its coral host, Pocillopora damicornis. A primary driver of this response is the host metabolite dimethylsulfoniopropionate (DMSP), a key element in the global sulfur cycle and a potent foraging cue throughout the marine food web. Coral mucus is rich in DMSP, and we found that DMSP alone elicits chemotactic responses of comparable intensity to whole mucus. Furthermore, in heat-stressed coral fragments, DMSP concentrations increased fivefold and the pathogen''s chemotactic response was correspondingly enhanced. Intriguingly, despite being a rich source of carbon and sulfur, DMSP is not metabolized by the pathogen, suggesting that it is used purely as an infochemical for host location. These results reveal a new role for DMSP in coral disease, demonstrate the importance of chemical signaling and swimming behavior in the recruitment of pathogens to corals and highlight the impact of increased seawater temperatures on disease pathways.  相似文献   
94.
Abstract

The accurate estimation of kinetic parameters is of fundamental importance for biochemical studies for research and industry. In this paper, we demonstrate the application of a modular microfluidic system for execution of enzyme assays that allow determining the kinetic parameters of the enzymatic reactions such as Vmax – the maximum rate of reaction and KM – the Michaelis constant. For experiments, the fluorogenic carbonate as a probe for a rapid determination of the kinetic parameters of hydrolases, such as lipases and esterases, was used. The microfluidic system together with the method described yields the kinetic constants calculated from the concentration of enzymatic product changes via a Michaelis–Menten model using the Lambert function W(x). This modular microfluidic system was validated on three selected enzymes (hydrolases).  相似文献   
95.
96.
97.
In the last 40 years, the United States invested over 200 billion dollars on cancer research, resulting in only a 5% decrease in death rate. A major obstacle for improving patient outcomes is the poor understanding of mechanisms underlying cellular migration associated with aggressive cancer cell invasion, metastasis and therapeutic resistance. Glioblastoma Multiforme (GBM), the most prevalent primary malignant adult brain tumor, exemplifies this difficulty. Despite standard surgery, radiation and chemotherapies, patient median survival is only fifteen months, due to aggressive GBM infiltration into adjacent brain and rapid cancer recurrence. The interactions of aberrant cell migratory mechanisms and the tumor microenvironment likely differentiate cancer from normal cells. Therefore, improving therapeutic approaches for GBM require a better understanding of cancer cell migration mechanisms. Recent work suggests that a small subpopulation of cells within GBM, the brain tumor stem cell (BTSC), may be responsible for therapeutic resistance and recurrence. Mechanisms underlying BTSC migratory capacity are only starting to be characterized. Due to a limitation in visual inspection and geometrical manipulation, conventional migration assays are restricted to quantifying overall cell populations. In contrast, microfluidic devices permit single cell analysis because of compatibility with modern microscopy and control over micro-environment. We present a method for detailed characterization of BTSC migration using compartmentalizing microfluidic devices. These PDMS-made devices cast the tissue culture environment into three connected compartments: seeding chamber, receiving chamber and bridging microchannels. We tailored the device such that both chambers hold sufficient media to support viable BTSC for 4-5 days without media exchange. Highly mobile BTSCs initially introduced into the seeding chamber are isolated after migration though bridging microchannels to the parallel receiving chamber. This migration simulates cancer cellular spread through the interstitial spaces of the brain. The phase live images of cell morphology during migration are recorded over several days. Highly migratory BTSC can therefore be isolated, recultured, and analyzed further. Compartmentalizing microfluidics can be a versatile platform to study the migratory behavior of BTSCs and other cancer stem cells. By combining gradient generators, fluid handling, micro-electrodes and other microfluidic modules, these devices can also be used for drug screening and disease diagnosis. Isolation of an aggressive subpopulation of migratory cells will enable studies of underlying molecular mechanisms.  相似文献   
98.
Clostridium thermocellum produces the prototypical cellulosome, a large multienzyme complex that efficiently hydrolyzes plant cell wall polysaccharides into fermentable sugars. This ability has garnered great interest in its potential application in biofuel production. The core non-catalytic scaffoldin subunit, CipA, bears nine type I cohesin modules that interact with the type I dockerin modules of secreted hydrolytic enzymes and promotes catalytic synergy. Because the large size and flexibility of the cellulosome preclude structural determination by traditional means, the structural basis of this synergy remains unclear. Small angle x-ray scattering has been successfully applied to the study of flexible proteins. Here, we used small angle x-ray scattering to determine the solution structure and to analyze the conformational flexibility of two overlapping N-terminal cellulosomal scaffoldin fragments comprising two type I cohesin modules and the cellulose-specific carbohydrate-binding module from CipA in complex with Cel8A cellulases. The pair distribution functions, ab initio envelopes, and rigid body models generated for these two complexes reveal extended structures. These two N-terminal cellulosomal fragments are highly dynamic and display no preference for extended or compact conformations. Overall, our work reveals structural and dynamic features of the N terminus of the CipA scaffoldin that may aid in cellulosome substrate recognition and binding.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号