首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   503篇
  免费   49篇
  国内免费   24篇
  2024年   2篇
  2023年   6篇
  2022年   4篇
  2021年   5篇
  2020年   15篇
  2019年   14篇
  2018年   17篇
  2017年   23篇
  2016年   12篇
  2015年   23篇
  2014年   8篇
  2013年   42篇
  2012年   13篇
  2011年   27篇
  2010年   22篇
  2009年   27篇
  2008年   25篇
  2007年   23篇
  2006年   21篇
  2005年   32篇
  2004年   12篇
  2003年   17篇
  2002年   15篇
  2001年   15篇
  2000年   9篇
  1999年   4篇
  1998年   14篇
  1997年   12篇
  1996年   10篇
  1995年   9篇
  1994年   6篇
  1993年   8篇
  1992年   5篇
  1991年   6篇
  1990年   4篇
  1989年   8篇
  1988年   1篇
  1987年   6篇
  1986年   5篇
  1985年   6篇
  1984年   13篇
  1983年   5篇
  1982年   4篇
  1981年   7篇
  1980年   6篇
  1979年   3篇
  1977年   1篇
  1976年   2篇
  1973年   2篇
排序方式: 共有576条查询结果,搜索用时 406 毫秒
41.
NADPH:protochlorophyllide oxidoreductase (POR) catalyzes hydrogen transfer from NADPH to protochlorophyllide (PChlide) in the course of chlorophyll biosynthesis in photosynthetic organisms and is involved in the regulation of the development of photosynthetic apparatus in higher plants, algae and cyanobacteria. To approach molecular factors determining the enzyme activity in a living cell, several mutants of POR from pea (Pisum sativum) with site-directed modifications in different parts of the enzyme were generated. The mutant enzymes were expressed in a R. capsulatus mutant deficient in BChl biosynthesis, and their catalytic activity and ability to integrate in bacterial metabolism were analyzed. Our results demonstrate that in heterologous bacterial cell system, higher plant POR is integrated in the porphyrin biosynthesis network and its activity leads to the formation of photosynthetic chlorophyll-proteins (CPs). The study of POR mutants in R. capsulatus reveals several POR domains important for the association of the enzyme with other subcellular components and for its catalytic activity, including identification of putative enzyme reaction center and substrate binding site. The study also demonstrated that an unknown structural factor is important for the formation of the enzyme photoactive complex in etiolated plants. Moreover, our findings suggest that POR might be directly involved in the regulation of the metabolism of other porphyrins. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
42.
环境条件对不同品种小麦缺Mn的影响   总被引:5,自引:1,他引:4  
在温室和网室中进行盆栽试验 ,研究不同环境条件和杂草对冬小麦缺Mn的影响 ,同时探讨不同小麦品种对缺Mn的耐性 ,发现生长在温室中的小麦其缺Mn症尤为严重 ,而从网室转移到温室的小麦因苗期在网室中受降雨渍水影响吸收了较多Mn2 ,缺Mn症就较轻 ,表明环境因子中降雨是影响小麦Mn营养的一个重要因素 ;供试的 3个品种中 331 7较耐缺Mn ,其Mn的吸收量明显高于敏感品种 .此外 ,试验还发现与小麦伴生的杂草麦麦草对Mn吸收能力强 ,是小麦根际Mn营养的有力争夺者 .  相似文献   
43.
44.
Excess manganese (Mn) in soil is toxic to crops, but in some situations arbuscular mycorrhizal fungi (AMF) alleviate the toxic effects of Mn. Besides the increased phosphorus (P) uptake, mycorrhiza may affect the balance between Mn-reducing and Mn-oxidizing microorganisms in the mycorrhizosphere and affect the level of extractable Mn in soil. The aim of this work was to compare mycorrhizal and non-mycorrhizal plants that received extra P in relation to alleviation of Mn toxicity and the balance between Mn-oxidizing and Mn-reducing bacteria in the mycorrhizosphere. A clayey soil containing 508 mg kg−1 of extractable Mn was fertilized with 30 mg kg−1 (P1) or 45 mg kg−1 (P2) of soluble P. Soybean (Glycine max L. Merrill, cv. IAC 8-2) plants at P1 level were non-inoculated (CP1) or inoculated with either Glomus etunicatum (GeP1) or G. macrocarpum (GmP1), while plants at P2 level were left non-inoculated (CP2). Plants were grown in a greenhouse and harvested after 80 days. In the mycorrhizosphere of the GmP1 and GeP1 plants a shift from Mn-oxidizing to Mn-reducing bacteria coincided with higher soil extractability of Mn and Fe. However, the occurrence of Mn-oxidizing/reducing bacteria in the (mycor)rhizosphere was unrelated to Mn toxicity in plants. Using 16S rDNA sequence homologies, the Mn-reducing isolates were consistent with the genus Streptomyces. The Mn-oxidizers were homologous with the genera Arthrobacter, Variovorax and Ralstonia. While CP1 plants showed Mn toxicity throughout the whole growth period, CP2 plants never did, in spite of having Fe and Mn shoot concentrations as high as in CP1 plants. Mycorrhizal plants showed Mn toxicity symptoms early in the growth period that were no longer visible in later growth stages. The shoot P concentration was almost twice as high in mycorrhizal plants compared with CP1 and CP2 plants. The shoot Mn and Fe concentrations and contents were lower in GmP1 and GeP1 plants compared with the CP2 treatment, even though levels of extractable metals increased in the soil when plants were mycorrhizal. This suggests that mycorrhiza protected its host plant from excessive uptake of Mn and Fe. In addition, higher tissue P concentrations may have facilitated internal detoxification of Mn in mycorrhizal plants. The exact mechanisms acting on alleviation of Mn toxicity in mycorrhizal plants should be further investigated.  相似文献   
45.
Photoinhibition under irradiance of 2 000 μmol m−2 s−1 (HI) was studied in detached control (C) and water deficit (WD) leaves of grapevine (Vitis vinifera L.) plants. The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll (Chl) fluorescence (Fv/Fm) and electron transport measurements. The potential efficiency of photosystem (PS) 2, Fv/Fm, marginally declined under HI in WD-leaves without significant increase of F0. In contrast, Fv/Fm ratio declined markedly with significant increase of F0 in C-leaves. In isolated thylakoids, the rate of whole chain and PS2 activity under HI were more decreased in C-than WD-leaves. The artificial exogenous electron donors diphenyl carbazide, NH2OH, and Mn2+ failed to restore the HI-induced loss of PS2 activity in both C-and WD-leaves. Thus HI operates at the acceptor side of PS2 in both leaf types. Quantification of the PS2 reaction centre protein D1 following HI exposure of leaves showed pronounced differences between C-and WD-leaves. The marked loss of PS2 activity under HI of C-leaves was due to the marked loss of D1 protein of the PS2 reaction centre.  相似文献   
46.
Cell proliferation is notably dependent on energy supply and generation of reducing equivalents in the form of NADPH for reductive biosynthesis. Blockage of pathways generating energy and reducing equivalents has proved successful for cancer treatment. We have previously reported that isomeric Zn(II) N-methylpyridylporphyrins (ZnTM-2(3,4)-PyP4+) can act as photosensitizers, preventing cell proliferation and causing cell death in vitro. The present study demonstrates that upon illumination, ZnTM-3-PyP inactivates glucose-6-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase, NADP+ -linked isocitrate dehydrogenase, aconitase, and fumarase in adenocarcinoma LS174T cells. ZnTM-3-PyP4+ was significantly more effective than hematoporphyrin derivative (HpD) for inactivation of all enzymes, except aconitase and isocitrate dehydrogenase. Enzyme inactivation was accompanied by aggregation, presumably due to protein cross-linking of some of the enzymes tested. Inactivation of metabolic enzymes caused disruption of cancer cells' metabolism and is likely to be one of the major reasons for antiproliferative activity of ZnTM-3-PyP.  相似文献   
47.
The action of irradiated cationic Fe(III)TMPyP and anionic Fe(III)TPPS4 forms of mesoporphyrins on mitochondrial functions was investigated using experimental conditions that caused minimal effects on mitochondria in the dark. Treatment of mitochondria with 1 microM Fe(III)TMPyP for 2 min decreased the respiratory control by 3% in the dark and 28% after irradiation. Fe(III)TPPS4 (1 microM) had no significant effect on respiratory control under any of the above conditions. Both porphyrins increased the mitochondrial production of reactive oxygen species in the presence of Ca2+; however, the effect of Fe(III)TMPyP was significantly stronger. In both cases, this overproduction was associated with membrane lipid peroxidation. It was also observed that the association constant of Fe(III)TMPyP with mitochondria was 11 times higher than that of Fe(III)TPPS4. In conclusion, the damage to isolated mitochondria induced by Fe(III)TMPyP under illumination was larger than by Fe(III)TPPS4, probably because its cationic charge favors association with the mitochondrial membrane. This is supported by the decrease in the association constant of Fe(III)TMPyP with mitochondria in higher salt medium.  相似文献   
48.
Two structurally related flexible imidazolyl ligands, bis(N-imidazolyl)methane (L1) and 1,4-bis(N-imidazolyl)butane (L2) reacted with Mn(II) salts of aliphatic dicarboxylic acids resulted in the formation of a number of novel metal-organic coordination architectures. All complexes have been structurally characterized by X-ray diffraction analysis. The different coordination modes of dicarboxylate anions due to their chain length, rigidity and diimidazolyl functionality lead to a range of different coordination structures. The coordination polymers exhibit 1D single chain, 2D sheet and 3D network structures. The aliphatic dicarboxylates can adopt chelating μ2, bridging μ2, and chelating-bridging μ3 coordination modes, or act as uncoordinated counter anions. The central metal ions are coordinated in N2O4 and N4O2 fashions depending on the ancillary ligands. The topology of [Mn(male)(L1)(H2O)2] (1, male = maleate) gives rise to singly bridged 1D chains, whereas compound [Mn(mal)(L1)(H2O)] · H2O (2, mal = malonate) exhibits 2D sheets in which the metal centers are bridged by both imidazolyl ligands and dicarboxylates. Compounds [Mn(L1)2(H2O)2](suc) · 6H2O (3, suc = succinate) and [Mn(L1)2(H2O)2](fum) · 6H2O (4, fum = fumarate) show doubly bridged 1D chains, and the dicarboxylate groups are not coordinated but form 2D corrugated sheets with water molecules intercalated between the cationic layers. Compound [Mn(suc)(L2)(H2O)2] (5, suc = succinate) was built from very flexible succinate and 1,4-bis(N-imidazolyl)butane which yielded three-dimensional interpenetrate networks, both succinate anion and the imidazolyl ligand act as bidentate bridging.  相似文献   
49.
Nucleic acids that contain multiple sequential guanines assemble into guanine quadruplexes (G-quadruplexes). Drugs that induce or stabilize G-quadruplexes are of interest because of their potential use as therapeutics. Previously, we reported on the interaction of the Cu(2+) derivative of 5,10,15,20-tetrakis(1-methyl-4-pyridyl)-21H,23H-porphine (CuTMpyP4), with the parallel-stranded G-quadruplexes formed by d(T(4)G( n )T(4)) (n = 4 or 8) (Keating and Szalai in Biochemistry 43:15891-15900, 2004). Here we present further characterization of this system using a series of guanine-rich oligonucleotides: d(T(4)G( n )T(4)) (n = 5-10). Absorption titrations of CuTMpyP4 with all d(T(4)G( n )G(4)) quadruplexes produce approximately the same bathochromicity (8.3 +/- 2 nm) and hypochromicity (46.2-48.6%) of the porphyrin Soret band. Induced emission spectra of CuTMpyP4 with d(T(4)G( n )T(4))(4) quadruplexes indicate that the porphyrin is protected from solvent. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry revealed a maximum porphyrin to quadruplex stoichiometry of 2:1 for the shortest (n = 4) and longest (n = 10) quadruplexes. Electron paramagnetic resonance spectroscopy shows that bound CuTMpyP4 occupies magnetically noninteracting sites on the quadruplexes. Consistent with our previous model for d(T(4)G(4)T(4)), we propose that two CuTMpyP4 molecules are externally stacked at each end of the run of guanines in all d(T(4)G( n )T(4)) (n = 4-10) quadruplexes.  相似文献   
50.
Manganese (Mn) is an essential nutrient that can be toxic in excess concentrations, especially during early development stages. The mechanisms of Mn toxicity is still unclear, and little information is available regarding the role of Mn speciation and fractionation in toxicology. We aimed to investigate the toxic effects of several chemical forms of Mn in embryos of Danio rerio exposed during different development stages, between 2 and 122 h post fertilization. We found a stage-specific increase of lethality associated with hatching and removal of the chorion. Mn(II), ([Mn(H2O)6]2+) appeared to be the most toxic species to embryos exposed for 48 h, and Mn(II) citrate was most toxic to embryos exposed for 72 and/or 120 h. Manganese toxicity was associated with calcium disruption, manganese speciation and metal fractionation, including bioaccumulation in tissue, granule fractions, organelles and denaturated proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号