首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   488篇
  免费   45篇
  国内免费   27篇
  2024年   3篇
  2023年   7篇
  2022年   3篇
  2021年   5篇
  2020年   15篇
  2019年   14篇
  2018年   18篇
  2017年   22篇
  2016年   7篇
  2015年   18篇
  2014年   11篇
  2013年   41篇
  2012年   12篇
  2011年   22篇
  2010年   16篇
  2009年   28篇
  2008年   20篇
  2007年   25篇
  2006年   18篇
  2005年   33篇
  2004年   12篇
  2003年   12篇
  2002年   17篇
  2001年   11篇
  2000年   8篇
  1999年   8篇
  1998年   15篇
  1997年   8篇
  1996年   10篇
  1995年   7篇
  1994年   9篇
  1993年   9篇
  1992年   6篇
  1991年   6篇
  1990年   6篇
  1989年   8篇
  1988年   3篇
  1987年   7篇
  1986年   4篇
  1985年   7篇
  1984年   13篇
  1983年   8篇
  1982年   5篇
  1981年   9篇
  1980年   6篇
  1979年   3篇
  1978年   1篇
  1976年   2篇
  1973年   2篇
排序方式: 共有560条查询结果,搜索用时 421 毫秒
551.
Bacterial community structures of a Fe-Mn nodule sample and its surrounding soil were investigated using PCR, amplified ribosomal DNA restriction analysis, cloning and sequencing methods. Result showed that phylogenetically diverse bacteria were present in the nodule and soil samples, and Acidobacteria- and Proteobacteria-affiliated bacteria dominated in both samples. However, Firmicutes were only found in the nodules, while the soil had much more Acidobacteria and Verrucomicrobia than the nodules. Many clones retrieved in this study closely resembled the clones previously obtained from environments with high metal contents. These findings may shed light on the biological formation of Mn oxides in soil environment.  相似文献   
552.
Extraction conditions have been found which result in the retention of managanese to the 33–34 kDa protein, first isolated as an apoprotein by Kuwabara and Murata (Kuwabara, T. and Murata, N. (1979) Biochim. Biophys Acta 581, 228–236). By maintaining an oxidizing-solution potential, with hydrophilic and lipophilic redox buffers during protein extraction of spinach grana-thylakoid membranes, the 33–34 kDa protein is observed to bind a maximum of 2 Mn/protein which are not released by extended dialysis versus buffer. This manganese is a part of the pool of 4 Mn/Photosystem II normally associated with the oxygen-evolving complex. The mechanism for retention of Mn to the protein during isolation appears to be by suppression of chemical reduction of natively bound, high-valent Mn to the labile Mn(II) oxidation state. This protein is also present in stoichiometric levels in highly active, O2-evolving, detergent-extracted PS-II particles which contain 4–5 Mn/PS II. Conditions which result in the loss of Mn and O2 evolution activity from functional membranes, such as incubation in 1.5 mM NH2OH or in ascorbate plus dithionite, also release Mn from the protein. The protein exists as a monomer of 33 kDa by gel filtration and 34 kDa by gel electrophoresis, with an isoelectric point of 5.1 ± 0.1. The protein exhibits an EPR spectrum only below 12 K which extends over at least 2000 G centered at g = 2 consisting of non-uniformly separated hyperfine transitions with average splitting of 45–55 G. The magnitude of this splitting is nominally one-half the splitting observed in monomeric manganese complexes having O or N donor ligands. This is apparently due to electronic coupling of the two 55Mn nuclei in a presumed binuclear site. Either a ferromagnetically coupled binuclear Mn2(III,III) site or an antiferromagnetically coupled mixed-valence Mn2(II,III) site are considered as possible oxidation states to account for the EPR spectrum. Qualitatively similar hyperfine structure splittings are observed in ferromagnetically coupled binuclear Mn complexes having even-spin ground states. The extreme temperature dependence suggests the population of low-lying excited spin states such as are present in weakly coupled dimers and higher clusters of Mn ions, or, possibly, from efficient spin relaxation such as occurs in the Mn(III) oxidation state. Either 1.5 mM NH2OH or incubation with reducing agents abolishes the low temperature EPR signal and releases two Mn(II) ions to solution. This is consistent with the presence of Mn(III) in the isolated protein. The intrinsically unstable Mn2(II,III) oxidation state observed in model compounds favors the assignment of the stable protein oxidation state to the Mn2(III,III) formulation. This protein exhibits characteristics consistent with an identification with the long-sought Mn site for photosynthetic O2 evolution. An EPR spectrum having qualitatively similar features is observable in dark-adapted intact, photosynthetic membranes (Dismukes, G.C., Abramowicz, D.A., Ferris, F.K., Mathur, P., Upadrashta, B. and Watnick, P. (1983) in The Oxygen-Evolving System of Plant Photosynthesis (Inoue, Y., ed.), pp. 145–158, Academic Press, Tokyo) and in detergent-extracted, O2-evolving Photosystem-II particles (Abramowicz, D.A., Raab, T.K. and Dismukes, G.C. (1984) Proceedings of the Sixth International Congress on Photosynthesis (Sybesma, C., ed.), Vol. I, pp. 349–354, Martinus Nijhoff/Dr. W. Junk Publishers, The Hague, The Netherlands), thus establishing a direct link with the O2 evolving complex.  相似文献   
553.
Abstract Growth of Staphylococcus aureus and Yersinia enterocolitica in human serum was enhanced by addition of excess iron or of the iron-chelating drug desferrioxamine, but neither had any effect on the growth of Streptococcus faecalis . Desferrioxamine could remove iron slowly from transferrin under physiological conditions, and desferrioxamine-bound iron was taken up by S. aureus and Y. enterocolitica but not by Strep. faecalis . The results suggest that patients with iron overload undergoing chelation therapy with desferrioxamine may have an increased risk of bacterial infection.  相似文献   
554.
Manganese (Mn) is known to be a neurotoxic agent for nearly 175 years now. A lot of research has therefore been carried out over the last century. From preliminary describing only symptoms of Mn-(over)exposed workers, research was preceded to more detail on toxic mechanisms of Mn. Unraveling those neurotoxic mechanisms implicated a number of studies, which were summarized partly in several reviews (e.g. Yokel RA. Neuromol Med 2009;11(4):297–310; Aschner M, et al. Toxicology Appl Pharmacol 2007;221(2):131–47; Michalke B, et al. J Environ Monit 2007;9(7):650). Since our recent review on Mn-speciation in 2007 (Michalke B, et al. J Environ Monit 2007;9(7):650), Mn-research was considerably pushed forward and several new research articles were published. The very recent years though, Mn toxicity investigating science is spreading into different fields with very detailed and complex study designs. Especially the mechanisms of Mn-induced neuronal injury on cellular and molecular level was investigated in more detail, discussing neurotransmitter and enzyme interactions, mechanisms of action on DNA level and even inclusion of genetic influences. Depicting the particular Mn-species was also a big issue to determine which molecule is transporting Mn at the cell membranes and which one is responsible for the injury of neuronal tissue. Other special foci on epidemiologic studies were becoming more and more important: These foci were directed toward environmental influences of Mn on especially Parkinson disease prevalence and the ability to carry out follow-up studies about Mn-life-span exposure. All these very far-reaching research applications may finally lead to a suitable future human Mn-biomonitoring for being able to prevent or at least detect the early onset of manganism at the right time.  相似文献   
555.
The progressive accumulation of insoluble aggregates of the presynaptic protein alpha-synuclein (α-Syn) is a hallmark of neurodegenerative disorders including Parkinson's disease (PD), Multiple System Atrophy, and Dementia with Lewy Bodies, commonly referred to as synucleinopathies. Despite considerable progress on the structural biology of these aggregates, the molecular mechanisms mediating their cell-to-cell transmission, propagation, and neurotoxicity remain only partially understood. Numerous studies have highlighted the stereotypical spatiotemporal spreading of pathological α-Syn aggregates across different tissues and anatomically connected brain regions over time. Experimental evidence from various cellular and animal models indicate that α-Syn transfer occurs in two defined steps: the release of pathogenic α-Syn species from infected cells, and their uptake via passive or active endocytic pathways. Once α-Syn aggregates have been internalized, little is known about what drives their toxicity or how they interact with the endogenous protein to promote its misfolding and subsequent aggregation. Similarly, unknown genetic factors modulate different cellular responses to the aggregation and accumulation of pathogenic α-Syn species. Here we discuss the current understanding of the molecular phenomena associated with the intercellular spreading of pathogenic α-Syn seeds and summarize the evidence supporting the transmission hypothesis. Understanding the molecular mechanisms involved in α-Syn aggregates transmission is essential to develop novel targeted therapeutics against PD and related synucleinopathies.  相似文献   
556.
Baicalein and baicalin, the major bioactive compounds found in the Chinese herb Scutellaria baicalensis, have been shown to be effective against cancer, bacterial infections and oxidative stress diseases. However, little is known about their mechanisms of action. To probe whether iron homeostasis modulation may play a role in their bioactivity, we have investigated their iron binding characteristics under physiologically relevant conditions. A 2:1 baicalein-ferrous complex was readily formed in 20 mM phosphate buffer, pH 7.2, with a binding constant ∼2-9 × 1011 M−2, whereas a 1:1 baicalein-ferric complex was formed, under the same conditions, with an apparent binding constant ∼1-3 × 106 M−1. Baicalein appears to bind the ferrous ion more strongly than ferrozine, a well known iron(II) chelator. Using 1 H NMR and Zn2+ and Ga3+ as probes, the iron-binding site on baicalein was elucidated to be at the O6/O7 oxygen atoms of the A-ring. No binding was observed for baicalin under the same NMR conditions. Furthermore, baicalein strongly inhibits the Fe-promoted Fenton chemistry via a combination of chelation and radical scavenging mechanism while baicalin can provide only partial protection against radical damage. These results indicate that baicalein is a strong iron chelator under physiological conditions and hence may play a vital role in modulating the body’s iron homeostasis. Modulation of metal homeostasis and the inhibition of Fenton chemistry may be one of the possible mechanisms for herbal medicine.  相似文献   
557.
Chelation removal of heavy metals from contaminated soil is seen as a viable remediation technique. A useful chelating agent should be strong, reusable, and biostable during metal extraction and recovery operations. This work tested the extraction, recovery, and biostability of EDTA as a potential remediating agent. Parameters, including EDTA concentration, soil type, soil content, washing cycle, precipitant concentration and type, and pH, were varied and tested during metal extraction and recovery operations. Factors, including EDTA concentration, aqueous and 5% soil slurry, presence of Pb, acclimated and unacclimated activated sludges, along with abiotic control, were varied and studied in the biodegradation of EDTA. The results showed that EDTA was able to extract lead completely from the tested soils, amenable to recovery by addition of cationic and anionic precipitants in the alkaline pH range, relatively biostable even under conditions very favorable toward biodegradation. Thus, EDTA is a strong, recoverable, and relatively biostable chelating agent that has potential for soil remediation application.  相似文献   
558.
H.H. Robinson  R.R. Sharp  C.F. Yocum   《BBA》1980,593(2):414-426
Treatments (illumination, chemical oxidation or reduction) which are potentially capable of producing paramagnetic centers in chloroplast thylakoid membranes do not produce enhancements of the proton magnetic relaxivities of these preparations. However, exposure of thylakoid membranes to varying concentrations of hydroxylamine induces a time-dependent increase in relaxivity for which the steady-state magnitude is dependent on hydroxylamine concentration. The appearance of relaxivity is correlated kinetically with inactivation of oxygen-evolving centers; in addition both processes show a threshold effect with respect to hydroxylamine concentration. Kinetic analyses of these hydroxylamine-induced effects suggest that at low (100 μM) and at intermediate (200–500 μM) concentrations, hydroxylamine extraction is partially counteracted by a reverse process that reactivates oxygen-evolving centers in the dark.  相似文献   
559.
Summary Observations from a soil management trial conducted on a previously grassed down orchard showed that after 3 years the pH of the surface soil (0–10 cm) whether measured in distilled water or 1N KCl was significantly lowered in herbicided and cultivated treatments in comparison with plots under continued grass sod. The drop in pH was accompanied by a decrease in base saturation and a consequent increase in exchange acidity. This was attributed to the leaching of Ca and also Mg from the surface soil of the non-grassed plots.In a subsequent laboratory leaching study, cubic soil blocks (16 cm3) were leached with distilled water at two weekly intervals for 24 weeks. It was found that over the experimental period, the cumulative quantity of cations leached (in milli-equivalents) per soil block from the herbicided and cultivated treatments was approximately 3.5 times that leached from the grassed treatment.  相似文献   
560.
Alkaline, saline waters are common in the Western Rift Valley of East Africa, in which the lake George-Edward basin is situated. A growing copper mining industry in the area makes it important to understand the limnology of the lakes in this basin before copper pollution occurs. The fish could possibly suffer from acute (or chronic) toxicity if copper levels increase.Abiotic factors within the alkaline, saline waters of this basin reduce the acute toxic effects of copper to fish. The most important factor is salinity, which is a measure of the total dissolved mineral salts. The relatively highly concentrations of mineral salts of these waters will to reduce the effective copper ionic activity through adsorption, precipitation, and ionic interference. The high concentrations of organic compounds in the waters, also complex and chelate the ionic Cu2+, thus reducing further its effective concentration. This will therefore act as a check on the copper toxicity to the fish of the lake basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号