首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   488篇
  免费   45篇
  国内免费   27篇
  2024年   3篇
  2023年   7篇
  2022年   3篇
  2021年   5篇
  2020年   15篇
  2019年   14篇
  2018年   18篇
  2017年   22篇
  2016年   7篇
  2015年   18篇
  2014年   11篇
  2013年   41篇
  2012年   12篇
  2011年   22篇
  2010年   16篇
  2009年   28篇
  2008年   20篇
  2007年   25篇
  2006年   18篇
  2005年   33篇
  2004年   12篇
  2003年   12篇
  2002年   17篇
  2001年   11篇
  2000年   8篇
  1999年   8篇
  1998年   15篇
  1997年   8篇
  1996年   10篇
  1995年   7篇
  1994年   9篇
  1993年   9篇
  1992年   6篇
  1991年   6篇
  1990年   6篇
  1989年   8篇
  1988年   3篇
  1987年   7篇
  1986年   4篇
  1985年   7篇
  1984年   13篇
  1983年   8篇
  1982年   5篇
  1981年   9篇
  1980年   6篇
  1979年   3篇
  1978年   1篇
  1976年   2篇
  1973年   2篇
排序方式: 共有560条查询结果,搜索用时 375 毫秒
21.
以脱脂菜籽粕酶解的复合氨基酸为主要原料,螯合率为考察指标,采用L16(4 5)正交试验设计,考察了pH值、温度、时间和配位比对螯合率的影响.结果显示,影响因素的高低顺序为:配位比>pH值>时间>温度.结果表明,复合氨基酸与铜螯合的主要影响因素为pH值和配位比,且配位比的影响达到极显著水平.最佳工艺条件为:时间50 min,温度50℃,配位比2∶1,pH为9,此条件下的复合氨基酸螯合铜的螯合率为94.59%,氨基酸含量为30.2%.  相似文献   
22.
ZnS:Mn nanoparticles were prepared by a chemical precipitation method and characterized by X‐ray diffraction (XRD), field emission gun scanning electron microscope (FEGSEM), and high resolution transmission electron microscopy (HRTEM). Capping agent (mercaptoethanol) concentrations used were 0 M, 0.005 M, 0.01 M, 0.015 M, 0.025 M, 0.040 M, and 0.060 M, and resulted in nanoparticles sizes of 2.98 nm, 2.9 nm, 2.8 nm, 2.7 nm, 2.61 nm, 2.2 nm and 2.1 nm, respectively. The thermoluminescence (TL) glow curve was recorded by heating the sample exposed to UV‐radiation, at a fixed heating rate 1°C sec–1. The TL intensity initially increased with temperature, attained a peak value Im for a particular temperature, and then decreased with further increase in temperature. The peak TL intensity increased with decreasing nanoparticle size, whereas the temperature corresponding to the peak TL intensity decreased slightly with reducing nanocrystal size. As a consequence of increase in surface‐to‐volume ratio and increased carrier recombination rates, the TL intensity increased with decreasing nanoparticle size. It was found that, whereas activation energy slightly decreased with decreasing nanoparticle size, the frequency factor decreased significantly with reduction in nanoparticle size. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
23.
The antioxidant potencies of chondroitin sulfates (CSs) from shark cartilage, salmon cartilage, bovine trachea, and porcine intestinal mucosa were compared by three representative methods for the measurement of the antioxidant activity; DPPH radical scavenging activity, superoxide radical scavenging activity, and hydroxyl radical scavenging activity. CSs from salmon cartilage and bovine trachea showed higher potency in comparison with CSs from shark cartilage and porcine intestinal mucosa. Next, CS from salmon cartilage chelating with Ca2+, Mg2+, Mn2+, or Zn2+ were prepared, and their antioxidant potencies were compared. CS chelating with Ca2+ or Mg2+ ions showed rather decreased DPPH radical scavenging activity in comparison with CS of H+ form. In contrast, CS chelating with Ca2+ or Mg2+ ion showed remarkably enhanced superoxide radical scavenging activity than CS of H+ or Na+ form. Moreover, CS chelating with divalent metal ions, Ca2+, Mg2+, Mn2+, or Zn2+, showed noticeably higher hydroxyl radical scavenging activity than CS of H+ or Na+ form. The present results revealed that the scavenging activities of, at least, superoxide radical and hydroxyl radical were enhanced by the chelation with divalent metal ions.  相似文献   
24.
It has now been firmly established that, not only ischemia/reperfusion, but also cold itself causes damage during kidney transplantation. Iron chelators or anti-oxidants applied during the cold plus rewarming phase are able to prevent this damage. At present, it is unknown if these measures act only during the cold, or whether application during the rewarming phase also prevents damage. We aimed to study this after cold normoxic and hypoxic conditions. LLC-PK1 cells were incubated at 4 degrees C in Krebs-Henseleit buffer for 6 or 24h, followed by 18 or 6h rewarming, respectively. Cold preservation was performed under both normoxic (95% air/5% CO2) and hypoxic (95% N2/5% CO2) conditions. The iron chelator 2,2'-DPD (100 microM), anti-oxidants BHT (20 microM) or sibilinin (200 microM), and xanthine oxidase inhibitor allopurinol (100 microM) were added during either cold preservation plus rewarming, or rewarming alone. Cell damage was assessed by LDH release (n=3-9). Addition of 2,2'-DPD and BHT during cold hypoxia plus rewarming did, but during rewarming alone did not prevent cell damage. When added during rewarming after 6h cold normoxic incubation, BHT and 2,2'-DPD inhibited rewarming injury compared to control (p<0.05). Allopurinol did not prevent cell damage in any experimental set-up. Our data show that application of iron chelators or anti-oxidants during the rewarming phase protects cells after normoxic but not hypoxic incubation. Allopurinol had no effect. Since kidneys are hypoxic during transplantation, measures aimed at preventing cold-induced and rewarming injury should be taken during the cold.  相似文献   
25.
In this study, the denitrification performance of the mixotrophic biological reactor was investigated under varying Fe(II)/Mn(II) molar ratio conditions. Results indicate that the optimal nitrate removal ratio occurred at an Fe(II)/Mn(II) molar ratio of 9:1, pH of 7, with an HRT of 10?h. When the reactor was performing under optimal conditions, the nitrate removal reached 100.00% at a rate of 0.116?mmol·L?1·h?1. The proportion of oxidized Fe(II) and Mn(II) reached 99.29% and 21.88%, respectively. High-throughput sequencing results show that Pseudomonas was the dominant species in the mixotrophic biological reactor. Furthermore, the relative abundance of Pseudomonas and denitrification performance was significantly influenced by variation in the Fe(II)/Mn(II) molar ratio.  相似文献   
26.
The emergence of multi-drug resistant pathogens in infectious disease conditions accentuates the need for the design of new classes of antimicrobial agents that could defeat the multidrug resistance problems. As a new class of molecules, the Heterocyclic Schiff base is of considerable interest, owing to their preparative accessibility, structural flexibilities, versatile metal chelating properties, and inherent biological activities. In the present study, CAM-B3LYP/LANL2DZ and M062X/DEF2-TZVP level of density functional method is used to explore the complexation of chalcone based Schiff base derivatives by Co2+, Ni2+, Cu2+, and Zn2+ metal ions. The HL(1-3)-Co2+, HL(1-3)-Ni2+ and HL(1-3)-Zn2+ complexes formed the distorted tetrahedral geometry. Whereas, the HL(1-3)-Cu2+ complexes prefers distorted square-planar geometry. The BSSE corrected interaction energies of the studied complexes reveals that Cu2+ ion forms the most stable complexes with all three chalcone based Schiff bases. Of the three Schiff bases studied, the HL2 Schiff base acts as a potent chelating agent and forms the active metal complexes than the HL1 and HL3 Schiff bases. Further, the strength of the interaction follows the order as Cu2+?>?Ni2+?>?Co2+?>?Zn2+. The QTAIM analysis reveals that the interaction between the metal ions and coordinating ligand atoms are electrostatic dominant. The metal interaction increases the π-delocalisation of electrons over the entire chelate. Hence, the antimicrobial activity of the metal complexes is more effective than the free Schiff bases. Moreover, the HL(1-3)-Cu2+ complexes shows higher antimicrobial activities than the other complexes studied.  相似文献   
27.
Escherichia coli, lacking cytoplasmic superoxide dismutases, exhibits a variety of oxygen-dependent phenotypic deficits. Enrichment of the growth medium with Mn(II) relieved those deficits. Extracts of cells grown on Mn(II)-rich medium exhibited superoxide dismutase-like activity that was due partially to low-molecular-weight and partially to high-molecular-weight complexes. The high-molecular-weight activity was sensitive to proteolysis. Hence this activity is likely associated with low-affinity binding of Mn to proteins.  相似文献   
28.
To further analyze the action of copper on brain synaptic mechanisms, the brain dipeptide carnosine (beta-alanyl-L-histidine) was tested in Xenopus laevis oocytes expressing the rat P2X4 or P2X7 receptors. Ten micromolar copper halved the currents evoked by ATP in both receptors; co-application of carnosine plus copper prevented the metal induced-inhibition with a median effective concentration of 12.1 +/- 3.9 and 12.0 +/- 5.5 microm for P2X4 and P2X7, respectively. Zinc potentiated only the P2X4 ATP-evoked currents; carnosine had no effect over this metal. The relative potency and selectivity of classical metal chelators to prevent the copper inhibition was compared between carnosine and penicillamine (PA), bathophenanthroline (BPh) or L-histidine (His). Their rank order of potency in P2X4 and P2X7 receptors was carnosine = PA = His > BPh > Glycine (Gly) and carnosine = BPh = His > PA > Gly, respectively. The potency to prevent the zinc-induced potentiation in the P2X4 receptor was BPh > PA > His; carnosine, Gly and beta-alanine were inactive. Whereas 1-100 microm carnosine or His alone did not modify the ATP-evoked currents, 10-100 microm PA augmented and 100 microm BPh decreased the ATP-evoked currents. Carnosine was able to revert the copper-induced inhibition restoring the maximal ATP gated current in a concentration-dependent manner. Electronic spectroscopy confirm the formation of carnosine-Cu(II) complexes, mechanism that can account for the prevention and reversal of the copper inhibition, revealing its potential in copper intoxication treatment.  相似文献   
29.
The ability of the mycotoxin citrinin to act as an inhibitor of iron-induced lipoperoxidation of biological membranes prompted us to determine whether it could act as an iron chelating agent, interfering with iron redox reactions or acting as a free radical scavenger. The addition of Fe3+ to citrinin rapidly produced a chromogen, indicating the formation of citrinin-Fe3+ complexes. An EPR study confirms that citrinin acts as a ligand of Fe3+, the complexation depending on the [Fe3+]:[citrinin] ratios. Effects of citrinin on the iron redox cycle were evaluated by oxygen consumption or the o-phenanthroline test. No effect on EDTA-Fe2+-->EDTA-Fe3+ oxidation was observed in the presence of citrinin, but the mycotoxin inhibited, in a dose-dependent manner, the oxidation of Fe2+ to Fe3+ by hydrogen peroxide. Reducing agents such as ascorbic acid and DTT reduced the Fe3+-citrinin complex, but DTT did not cause reduction of Fe3+-EDTA, indicating that the redox potentials of Fe3+-citrinin and Fe3+-EDTA are not the same. The Fe2+ formed from the reduction of Fe3+-citrinin by reducing agents was not rapidly reoxidized to Fe3+ by atmospheric oxygen. Citrinin has no radical scavenger ability as demonstrated by the absence of DPPH reduction. However, a reaction between citrinin and hydrogen peroxide was observed by UV spectrum changes of citrinin after incubation with hydrogen peroxide. It was also observed that citrinin did not induce direct or reductive mobilization of iron from ferritin. These results indicate that the protective effect on iron-induced lipid peroxidation by citrinin occurs due to the formation of a redox inactive Fe3+-citrinin complex, as well as from the reaction of citrinin and hydrogen peroxide.  相似文献   
30.
The SS bond-activation of diorganyl disulfide by the anionic metal carbonyl fragment [Mn(CO)5] gives rise to an extensive chemistry. Oxidative decarbonylation addition of 2,2′-dithiobis(pyridine-N-oxide) to [Mn(CO)5], followed by chelation and metal-center oxidation, led to the formation of [MnII(SC5H4NO)3] (1). The effective magnetic moment in solid state by SQUID magnetometer was 5.88 μB for complex 1, which is consistent with the MnII having a high-spin d5 electronic configuration in an octahedral ligand field. The average Mn(II)S, SC and NO bond lengths of 2.581(1), 1.692(4) and 1.326(4) Å, respectively, indicate that the negative charge of the bidentate 1-oxo-2-thiopyridinato [SC5H4NO] ligand in complex 1 is mainly localized on the oxygen atom. The results are consistent with thiolate-donor [SC5H4NO] stabilization of the lower oxidation state of manganese (Mn(I)), while the O,S-chelating [SC5H4NO] ligand enhances the stability of manganese in the higher oxidation state (Mn(II)). Activation of SS bond as well as OH bond of 2,2′-dithiosalicylic acid by [Mn(CO)5] yielded [(CO)3Mn(μ-SC6H4C(O)O)2Mn(CO)3]2− (4). Oxidative addition of bis(o-benzamidophenyl) disulfide to [Mn(CO)5] resulted in the formation of cis-[Mn(CO)4(SR)2] (R=C6H4NHCOPh) which was employed as a chelating metallo ligand to synthesize heterotrinuclear [(CO)3Mn(μ-SR)3Co(μ-SR)3Mn(CO)3] (8) possessing a homoleptic hexathiolatocobalt(III) core.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号