首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   888篇
  免费   103篇
  国内免费   21篇
  2024年   6篇
  2023年   21篇
  2022年   23篇
  2021年   41篇
  2020年   25篇
  2019年   26篇
  2018年   30篇
  2017年   12篇
  2016年   14篇
  2015年   28篇
  2014年   51篇
  2013年   49篇
  2012年   31篇
  2011年   36篇
  2010年   28篇
  2009年   35篇
  2008年   51篇
  2007年   33篇
  2006年   39篇
  2005年   26篇
  2004年   31篇
  2003年   26篇
  2002年   15篇
  2001年   24篇
  2000年   21篇
  1999年   19篇
  1998年   11篇
  1997年   23篇
  1996年   20篇
  1995年   15篇
  1994年   10篇
  1993年   15篇
  1992年   15篇
  1991年   15篇
  1990年   15篇
  1989年   12篇
  1988年   6篇
  1987年   12篇
  1986年   11篇
  1985年   14篇
  1984年   12篇
  1983年   10篇
  1982年   7篇
  1981年   5篇
  1980年   8篇
  1979年   8篇
  1978年   6篇
  1977年   4篇
  1976年   5篇
  1970年   3篇
排序方式: 共有1012条查询结果,搜索用时 15 毫秒
101.
Dinoflagellates are protists with permanently condensed chromosomes that lack histones and whose nuclear membrane remains intact during mitosis. These unusual nuclear characters have suggested that the typical cell cycle regulators might be slightly different than those in more typical eukaryotes. To test this, a cyclin has been isolated from the dinoflagellate Gonyaulax polyedra by functional complementation in cln123 mutant yeast. This GpCyc1 sequence contains two cyclin domains in its C-terminal region and a degradation box typical of mitotic cyclins. Similar to other dinoflagellate genes, GpCyc1 has a high copy number, with approximately 5000 copies found in the Gonyaulax genome. An antibody raised against the N-terminal region of the GpCYC1 reacts with a 68kDa protein on Western blots that is more abundant in cell cultures enriched for G2-phase cells than in those containing primarily G1-phase cells, indicating its cellular level follows a pattern expected for a mitotic cyclin. This is the first report of a cell cycle regulator cloned and sequenced from a dinoflagellate, and our results suggest control of the dinoflagellate cell cycle will be very similar to that of other organisms.  相似文献   
102.
Proton block of unitary currents through BK channels was investigated with single-channel recording. Increasing intracellular proton concentration decreased unitary current amplitudes with an apparent pKa of 5.1 without discrete blocking events, indicating fast proton block. Unitary currents recorded at pH(i) 8.0 and 9.0 had the same amplitudes, indicating that 10(-8) M H(+) had little blocking effect. Increasing H(+) by recording at pH(i) 7.0, 6.0, and 5.0 then reduced the unitary currents by 13%, 25%, and 53%, respectively, at +200 mV. Increasing K(+)(i) relieved the proton block in a manner consistent with competitive inhibition of K(+)(i) action by H(+)(i). Proton block was voltage dependent, increasing with depolarization, indicating that block was coupled to the electric field of the membrane. Proton block was not described by the Woodhull equation for noncompetitive voltage-dependent block, but was described by an equation for cooperative competitive inhibition that included voltage-dependent block from the Woodhull equation. Proton block was still present after replacing the eight negative charges in the ring of charge at the entrance to the intracellular vestibule by uncharged amino acids. Thus, the ring of charge is not the site of proton block or of competitive inhibition of K(+)(i) action by H(+)(i). With 150 mM symmetrical KCl, unitary current amplitudes increased with depolarization, reaching 66 pA at +350 mV (pH(i) 7.0). The increase in amplitude with voltage became sublinear for voltages >100 mV. The sublinearity was unaffected by removing from the intracellular solutions Ca(2+) and Ba(2+) ions, the Ca(2+) buffers EGTA and HEDTA, the pH buffer TES, or by replacing Cl(-) with MeSO(3)(-). Proton block accounted for approximately 40% of the sublinearity at +200 mV and pH 7.0, indicating that factors in addition to proton block contribute to the sublinearity of the unitary currents through BK channels.  相似文献   
103.
104.
Bipolar spindle formation is essential for faithful chromosome segregation at mitosis. Because centrosomes define spindle poles, abnormal number and structural organization of centrosomes can lead to loss of spindle bipolarity and genetic integrity. ASAP (aster-associated protein or MAP9) is a centrosome- and spindle-associated protein, the deregulation of which induces severe mitotic defects. Its phosphorylation by Aurora A is required for spindle assembly and mitosis progression. Here, we show that ASAP is localized to the spindle poles by Polo-like kinase 1 (Plk1) (a mitotic kinase that plays an essential role in centrosome regulation and mitotic spindle assembly) through the γ-TuRC-dependent pathway. We also demonstrate that ASAP is a novel substrate of Plk1 phosphorylation and have identified serine 289 as the major phosphorylation site by Plk1 in vivo. ASAP phosphorylated on serine 289 is localized to centrosomes during mitosis, but this phosphorylation is not required for its Plk1-dependent localization at the spindle poles. We show that phosphorylated ASAP on serine 289 contributes to spindle pole stability in a microtubule-dependent manner. These data reveal a novel function of ASAP in centrosome integrity. Our results highlight dual ASAP regulation by Plk1 and further confirm the importance of ASAP for spindle pole organization, bipolar spindle assembly, and mitosis.  相似文献   
105.
Several aspects of mitotic spindle assembly are orchestrated by the Ran GTPase through its modulation of the interaction between spindle assembly factors and importin-α. One such factor is TPX2 that promotes microtubule assembly in the vicinity of chromosomes. TPX2 is inhibited when bound to importin-α, which occurs when the latter is bound to importin-β. The importin-α:β interaction is disrupted by the high RanGTP concentration near the chromosomes, releasing TPX2. In more distal regions, where Ran is predominantly GDP-bound, TPX2 remains bound to importin-α and so is inhibited. Here we use a combination of structural and biochemical methods to define the basis for TPX2 binding to importin-α. A 2.2 Å resolution crystal structure shows that the primary nuclear localization signal (284KRKH287) of TPX2, which has been shown to be crucial for inhibition, binds to the minor NLS-binding site on importin-α. This atypical interaction pattern was confirmed using complementary binding studies that employed importin-α variants in which binding to either the major or minor NLS-binding site was impaired, together with competition assays using the SV40 monopartite NLS that binds primarily to the major site. The different way in which TPX2 binds to importin-α could account for much of the selectivity necessary during mitosis because this would reduce the competition for binding to importin-α from other NLS-containing proteins.  相似文献   
106.
107.
Effects of exogenous nickel (Ni: 10 and 200 μM) on growth, mitotic activity, Ni accumulation, H2O2 content and lipid peroxidation as well as the activities of various antioxidative enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione peroxidase (GSH-Px) were investigated in wheat roots. A considerable Ni accumulation in the roots occurred at both the concentrations. Although Ni at 10 μM did not have any significant effect on root growth, it strongly inhibited the root growth at 200 μM. Mitotic activity in the root tips was not significantly affected by exposure of the seedlings to 10 μM Ni; however, it was almost completely inhibited at 200 μM treatment. Ni stress did not result in any significant changes in CAT and APX activities as well as lipid peroxidation. However, H2O2 concentration increased up to 82% over the control in the roots of seedlings exposed to 200 μM Ni. There was a significant decline in both SOD (50%) and GSH-Px (20–30%) activities in the roots when the seedlings were treated with 200 μM Ni. The results indicated that a strong inhibition of wheat root growth caused by Ni stress was not due to enhanced lipid peroxidation, but might be related to the accumulation of H2O2 in root tissue.  相似文献   
108.
The embryos from many outbred and inbred strains of mice are arrested at the late 2-cell stage when cultured in vitro in simple culture media. This phenomenon is referred to as the "2-cell block in vitro". The ultrastructural morphology of the nuclei of the blocked embryos is not yet well described. In the present paper we documented the results of a comparative study on the nuclei of mouse embryos, both normally developing and arrested at the 2-cell stage. The blocked embryos maintain the morphological integrity of their nuclei. Main nuclear domains (nucleolus precursor bodies, interchromatin granule clusters, perichromatin granules, and perichromatin fibrils), typical for the control embryos, are observed in the blocked ones. A number and morphological characteristics of these nuclear substructures are not changed significantly in the blocked embryos. At the same time, RNA polymerase II and pre-mRNA splicing factors are redistributed in the nucleus of the blocked embryos. Although something goes to show that nuclear organization of the blocked embryos differ from that of the control, we could not reveal in the blocked embryos distinct signs of degeneration which might characterize aged or dying cells. Our data confirm a peculiar functional state of the 2-cell blocked embryos.  相似文献   
109.
A novel gene, EFHC1, mutated in juvenile myoclonic epilepsy (JME) encodes a protein with three DM10 domains of unknown function and one putative EF-hand motif. To study the properties of EFHC1, we expressed EGFP-tagged protein in various cell lines. In interphase cells, the fusion protein was present in the cytoplasm and in the nucleus with specific accumulation at the centrosome. During mitosis EGFP-EFHC1 colocalized with the mitotic spindle, especially at spindle poles and with the midbody during cytokinesis. Using a specific antibody, we demonstrated the same distribution of the endogenous protein. Deletion analyses revealed that the N-terminal region of EFHC1 is crucial for the association with the mitotic spindle and the midbody. Our results suggest that EFHC1 could play an important role during cell division.  相似文献   
110.
The mitotic spindle assembly checkpoint delays anaphase until all chromosomes achieve bipolar attachment to the spindle microtubules. The spindle assembly checkpoint protein BubR1 is thought to act by forming an inhibitory complex with Cdc20. We here identify two Cdc20 binding sites on BubR1. A strong Cdc20 binding site is located between residues 490 and 560, but mutations that disrupt Cdc20 binding to this region have no effect upon checkpoint function. A second Cdc20 binding site present between residues 1 and 477 is highly specific for Cdc20 already bound to Mad2. Mutation of a conserved lysine in this region weakened Cdc20 binding and correspondingly reduced checkpoint function. Our results indicate that there may be more than one checkpoint complex containing BubR1, Mad2, and Cdc20. They also lead us to propose that in vivo checkpoint inhibition of Cdc20 is a two-step process in which prior binding of Mad2 to Cdc20 is required to make Cdc20 sensitive to inhibition by BubR1. Thus, Mad2 and BubR1 must cooperate to inhibit Cdc20 activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号