首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   4篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   6篇
  2020年   6篇
  2019年   3篇
  2018年   10篇
  2017年   2篇
  2016年   5篇
  2015年   13篇
  2014年   12篇
  2013年   7篇
  2012年   2篇
  2011年   6篇
  2010年   5篇
排序方式: 共有86条查询结果,搜索用时 15 毫秒
51.
52.
目的:观察线粒体自噬在急性心梗(MI)早期的变化及对1型糖尿病(DM)小鼠心肌急性缺血损伤的影响。方法:将100只健康雄性C57BL/6小鼠随机分为5组,对照+假手术组(CS组);1型糖尿病+假手术组(DS组);对照+心肌梗死组(CMI组);1型糖尿病+心肌梗死组(DMI组);1型糖尿病+心肌梗死组+Parkin腺病毒过表达组(DMIPO组),每组20只。检测和比较各组小鼠的心脏功能,心肌梗死面积,心肌细胞凋亡,自噬小体含量以及心肌组织中Parkin和LC3的表达量变化。结果:与CS组相比,CMI组自噬小体含量增多,LC3II的表达量上调,Parkin的表达量明显上调(P0.05)。与CMI组比,DMI组小鼠心功能下降加剧,心梗面积增大,心肌细胞凋亡数量明显增加(P0.05),自噬水平未见明显升高。DMIPO组较DMI组自噬水平升高,心肌梗死面积减小(P0.05),心肌细胞凋亡数量减少(P0.05),心功能改善。结论:1型糖尿病通过抑制Parkin介导的心肌线粒体自噬增加心肌急性缺血损伤易感性,上调Parkin的表达可以减轻1型糖尿病时急性缺血性心肌损伤。  相似文献   
53.
54.
Osteoarthritis (OA) is characterized with articular cartilage degradation, and monosodium iodoacetate (MIA)-treated chondrocyte is the most commonly used model for mimicking OA progression. Zinc protects chondrocytes from MIA-induced damage. Here, we explored the protective effects of 25 μM zinc on 5 μM MIA-treated SW1353 cells (human chondrosarcoma cell line) through the analysis of energy metabolism- and autophagy-related parameters. We found that the exposure of SW1353 cells to MIA decreased ATP levels, expression of glycolysis-related proteins, including glucose transporter 1, hexokinase 2, and pyruvate dehydrogenase E1 component subunit alpha, and the levels of mitochondrial complex I, II, IV, and V subunits of the oxidative phosphorylation pathway. MIA treatment also decreased the expression of autophagy-related proteins, including autophagic elongation protein 5 (ATG5), ATG7, and microtubule-associated protein 1A/1B light chain 3B (LC3-II) and mitophagy-related proteins, including phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1), ubiquitin, and p62. These results indicate that MIA interferes with energy metabolism and the autophagic clearance of dysfunctional mitochondria (so called mitophagy). Interestingly, zinc exposure could almost completely reverse the effects of MIA, suggesting its potential protective role against OA progression.  相似文献   
55.
56.
Sepsis-induced myocardial dysfunction is associated with increased oxidative stress and mitochondrial dysfunction. Current evidence suggests a protective role of thioredoxin-1 (Trx1) in the pathogenesis of cardiovascular diseases. However, it is unknown yet a putative role of Trx1 in sepsis-induced myocardial dysfunction, in which oxidative stress is an underlying cause. Transgenic male mice with Trx1 cardiac-specific overexpression (Trx1-Tg) and its wild-type control (wt) were subjected to cecal ligation and puncture or sham surgery. After 6, 18, and 24 h, cardiac contractility, antioxidant enzymes, protein oxidation, and mitochondrial function were evaluated. Trx1 overexpression improved the average life expectancy (Trx1-Tg: 36, wt: 28 h; p = 0.0204). Sepsis induced a decrease in left ventricular developed pressure in both groups, while the contractile reserve, estimated as the response to β-adrenergic stimulus, was higher in Trx1-Tg in relation to wt, after 6 h of the procedure. Trx1 overexpression attenuated complex I inhibition, protein carbonylation, and loss of membrane potential, and preserved Mn superoxide dismutase activity at 24 h. Ultrastructural alterations in mitochondrial cristae were accompanied by reduced optic atrophy 1 (OPA1) fusion protein, and activation of dynamin-related protein 1 (Drp1) (fission protein) in wt mice at 24 h, suggesting mitochondrial fusion/fission imbalance. PGC-1α gene expression showed a 2.5-fold increase in Trx1-Tg at 24 h, suggesting mitochondrial biogenesis induction. Autophagy, demonstrated by electron microscopy and increased LC3-II/LC3-I ratio, was observed earlier in Trx1-Tg. In conclusion, Trx1 overexpression extends antioxidant protection, attenuates mitochondrial damage, and activates mitochondrial turnover (mitophagy and biogenesis), preserves contractile reserve and prolongs survival during sepsis.  相似文献   
57.
线粒体自噬指细胞通过自噬机制选择性除去损伤或多余的线粒体。真核生物通过线粒体自噬调控线粒体质量,维持供能细胞器的功能。大量研究表明,帕金森病相关基因PINK1和parkin可通过线粒体自噬参与并维持线粒体功能。PINK1与parkin能协同特异性识别损伤的线粒体,PINK1作为线粒体质量调控的探测器被活化,此过程中泛素化酶和去泛素化酶对维持parkin活性及线粒体自噬的效率有重要作用。本文主要总结PINK1/parkin通路在线粒体自噬中的功能与作用。  相似文献   
58.
To determine the differences between brown adipocytes from interscapular brown tissue (iBAT) and those induced in white adipose tissue (WAT) with respect to their thermogenic capacity, we examined two essential characteristics: the dynamics of mitochondrial turnover during reversible transitions from 29 °C to 4 °C and the quantitative relationship between UCP1 and selected subunits of mitochondrial respiratory complex in the fully recruited state. To follow the kinetics of induction and involution of mitochondria, we determined the expression pattern of UCP1 and other mitochondrial proteins as well as analyzed mtDNA content after cold stimulation and reacclimation to thermoneutrality. We showed that UCP1 turnover is very different in iBAT and inguinal WAT (ingWAT); the former showed minimal changes in protein content, whereas the latter showed major changes. Similarly, in iBAT both mtDNA content and the expression of mitochondrial proteins were stable and expressed at similar levels during reversible transitions from 29 °C to 4 °C, whereas ingWAT revealed dynamic changes. Further analysis showed that in iBAT, the expression patterns for UCP1 and other mitochondrial proteins resembled each other, whereas in ingWAT, UCP1 varied ∼100-fold during the transition from cold to warmth, and no other mitochondrial proteins matched UCP1. In turn, quantitative analysis of thermogenic capacity determined by estimating the proportion of UCP1 to respiratory complex components showed no significant differences between brown and brite adipocytes, suggesting similar thermogenic potentiality. Our results indicate that dynamics of brown adipocytes turnover during reversible transition from warm to cold may determine the thermogenic capacity of an individual in a changing temperature environment.  相似文献   
59.
The Saccharomyces cerevisiae TAZ1 gene is an orthologue of human TAZ; both encode the protein tafazzin. Tafazzin is a transacylase that transfers acyl chains with unsaturated fatty acids from phospholipids to monolysocardiolipin to generate cardiolipin with unsaturated fatty acids. Mutations in human TAZ cause Barth syndrome, a fatal childhood cardiomyopathy biochemically characterized by reduced cardiolipin mass and increased monolysocardiolipin levels. To uncover cellular processes that require tafazzin to maintain cell health, we performed a synthetic genetic array screen using taz1Δ yeast cells to identify genes whose deletion aggravated its fitness. The synthetic genetic array screen uncovered several mitochondrial cellular processes that require tafazzin. Focusing on the i-AAA protease Yme1, a mitochondrial quality control protein that degrades misfolded proteins, we determined that in cells lacking both Yme1 and Taz1 function, there were substantive mitochondrial ultrastructural defects, ineffective superoxide scavenging, and a severe defect in mitophagy. We identify an important role for the mitochondrial protease Yme1 in the ability of cells that lack tafazzin function to maintain mitochondrial structural integrity and mitochondrial quality control and to undergo mitophagy.  相似文献   
60.
Oxidative mitochondrial damage is closely linked to inflammation and cell death, but low levels of reactive oxygen and nitrogen species serve as signals that involve mitochondrial repair and resolution of inflammation. More specifically, cytoprotection relies on the elimination of damaged mitochondria by selective autophagy (mitophagy) during mitochondrial quality control. This aim of this study was to identify and localize mitophagy in the mouse lung as a potentially upregulatable redox response to Staphylococcus aureus sepsis. Fibrin clots loaded with S. aureus (1×107 CFU) were implanted abdominally into anesthetized C57BL/6 and B6.129X1-Nfe2l2tm1Ywk/J (Nrf2−/−) mice. At the time of implantation, mice were given vancomycin (6 mg/kg) and fluid resuscitation. Mouse lungs were harvested at 0, 6, 24, and 48 h for bronchoalveolar lavage (BAL), Western blot analysis, and qRT-PCR. To localize mitochondria with autophagy protein LC3, we used lung immunofluorescence staining in LC3–GFP transgenic mice. In C57BL/6 mice, sepsis-induced pulmonary inflammation was detected by significant increases in mRNA for the inflammatory markers IL-1β and TNF-α at 6 and 24 h, respectively. BAL cell count and protein also increased. Sepsis suppressed lung Beclin-1 protein, but not mRNA, suggesting activation of canonical autophagy. Notably sepsis also increased the LC3-II autophagosome marker, as well as the lung׳s noncanonical autophagy pathway as evidenced by loss of p62, a redox-regulated scaffolding protein of the autophagosome. In LC3–GFP mouse lungs, immunofluorescence staining showed colocalization of LC3-II to mitochondria, mainly in type 2 epithelium and alveolar macrophages. In contrast, marked accumulation of p62, as well as attenuation of LC3-II in Nrf2-knockout mice supported an overall decrease in autophagic turnover. The downregulation of canonical autophagy during sepsis may contribute to lung inflammation, whereas the switch to noncanonical autophagy selectively removes damaged mitochondria and accompanies tissue repair and cell survival. Furthermore, mitophagy in the alveolar region appears to depend on activation of Nrf2. Thus, efforts to promote mitophagy may be a useful therapeutic adjunct for acute lung injury in sepsis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号