首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   4篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   6篇
  2019年   3篇
  2018年   10篇
  2017年   2篇
  2016年   5篇
  2015年   13篇
  2014年   12篇
  2013年   7篇
  2012年   2篇
  2011年   6篇
  2010年   5篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
51.
Osteoarthritis (OA) is characterized with articular cartilage degradation, and monosodium iodoacetate (MIA)-treated chondrocyte is the most commonly used model for mimicking OA progression. Zinc protects chondrocytes from MIA-induced damage. Here, we explored the protective effects of 25 μM zinc on 5 μM MIA-treated SW1353 cells (human chondrosarcoma cell line) through the analysis of energy metabolism- and autophagy-related parameters. We found that the exposure of SW1353 cells to MIA decreased ATP levels, expression of glycolysis-related proteins, including glucose transporter 1, hexokinase 2, and pyruvate dehydrogenase E1 component subunit alpha, and the levels of mitochondrial complex I, II, IV, and V subunits of the oxidative phosphorylation pathway. MIA treatment also decreased the expression of autophagy-related proteins, including autophagic elongation protein 5 (ATG5), ATG7, and microtubule-associated protein 1A/1B light chain 3B (LC3-II) and mitophagy-related proteins, including phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1), ubiquitin, and p62. These results indicate that MIA interferes with energy metabolism and the autophagic clearance of dysfunctional mitochondria (so called mitophagy). Interestingly, zinc exposure could almost completely reverse the effects of MIA, suggesting its potential protective role against OA progression.  相似文献   
52.
53.
Mitochondrial quality control is increasingly recognized as an essential element in maintaining optimally functioning tissues. Mitochondrial quality control depends upon a balance between biogenesis and autophagic destruction. Mitochondrial dynamics (fusion and fission) allows for the redistribution of mitochondrial components. We speculate that this permits sorting of highly functional components into one end of a mitochondrion, while damaged components are segregated at the other end, to be jettisoned by asymmetric fission followed by selective mitophagy. Ischemic preconditioning requires autophagy/mitophagy, resulting in selective elimination of damaged mitochondria, leaving behind a population of robust mitochondria with a higher threshold for opening of the mitochondrial permeability transition pore. In this review we will consider the factors that regulate mitochondrial biogenesis and destruction, the machinery involved in both processes, and the biomedical consequences associated with altered mitochondrial turnover. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.

Research Highlights

?Mitochondrial quality control is accomplished by balanced destruction and production. ?Fission and fusion are essential for mitochondrial quality control. ?Mitophagy is mediated by Bnip3, Nix, Parkin, PINK1, and p62/SQSTM1. ?Impaired mitochondrial dynamics results in human disease. ?Mitophagy enables cardioprotection and metabolic reprogramming.  相似文献   
54.
Mutations in the ubiquitin ligase Parkin and the serine/threonine kinase PINK1 can cause Parkinson disease. Both proteins function in the elimination of defective mitochondria by autophagy. In this process, activation of PINK1 mediates translocation of Parkin from the cytosol to mitochondria by an unknown mechanism. To better understand how Parkin is targeted to defective mitochondria, we purified affinity-tagged Parkin from mitochondria and identified Parkin-associated proteins by mass spectrometry. The three most abundant interacting proteins were the voltage-dependent anion channels 1, 2, and 3 (VDACs 1, 2, and 3), pore-forming proteins in the outer mitochondrial membrane. We demonstrate that Parkin specifically interacts with VDACs when the function of mitochondria is disrupted by treating cells with the proton uncoupler carbonyl cyanide p-chlorophenylhydrazone. In the absence of all three VDACs, the recruitment of Parkin to defective mitochondria and subsequent mitophagy are impaired. Each VDAC is sufficient to support Parkin recruitment and mitophagy, suggesting that VDACs can function redundantly. We hypothesize that VDACs serve as mitochondrial docking sites to recruit Parkin from the cytosol to defective mitochondria.  相似文献   
55.
In mammalian cells, the autophagy-dependent degradation of mitochondria (mitophagy) is thought to maintain mitochondrial quality by eliminating damaged mitochondria. However, the physiological importance of mitophagy has not been clarified in yeast. Here, we investigated the physiological role of mitophagy in yeast using mitophagy-deficient atg32- or atg11-knock-out cells. When wild-type yeast cells in respiratory growth encounter nitrogen starvation, mitophagy is initiated, excess mitochondria are degraded, and reactive oxygen species (ROS) production from mitochondria is suppressed; as a result, the mitochondria escape oxidative damage. On the other hand, in nitrogen-starved mitophagy-deficient yeast, excess mitochondria are not degraded and the undegraded mitochondria spontaneously age and produce surplus ROS. The surplus ROS damage the mitochondria themselves and the damaged mitochondria produce more ROS in a vicious circle, ultimately leading to mitochondrial DNA deletion and the so-called "petite-mutant" phenotype. Cells strictly regulate mitochondrial quantity and quality because mitochondria produce both necessary energy and harmful ROS. Mitophagy contributes to this process by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS production.  相似文献   
56.
线粒体自噬指细胞通过自噬机制选择性除去损伤或多余的线粒体。真核生物通过线粒体自噬调控线粒体质量,维持供能细胞器的功能。大量研究表明,帕金森病相关基因PINK1和parkin可通过线粒体自噬参与并维持线粒体功能。PINK1与parkin能协同特异性识别损伤的线粒体,PINK1作为线粒体质量调控的探测器被活化,此过程中泛素化酶和去泛素化酶对维持parkin活性及线粒体自噬的效率有重要作用。本文主要总结PINK1/parkin通路在线粒体自噬中的功能与作用。  相似文献   
57.
Sepsis-induced myocardial dysfunction is associated with increased oxidative stress and mitochondrial dysfunction. Current evidence suggests a protective role of thioredoxin-1 (Trx1) in the pathogenesis of cardiovascular diseases. However, it is unknown yet a putative role of Trx1 in sepsis-induced myocardial dysfunction, in which oxidative stress is an underlying cause. Transgenic male mice with Trx1 cardiac-specific overexpression (Trx1-Tg) and its wild-type control (wt) were subjected to cecal ligation and puncture or sham surgery. After 6, 18, and 24 h, cardiac contractility, antioxidant enzymes, protein oxidation, and mitochondrial function were evaluated. Trx1 overexpression improved the average life expectancy (Trx1-Tg: 36, wt: 28 h; p = 0.0204). Sepsis induced a decrease in left ventricular developed pressure in both groups, while the contractile reserve, estimated as the response to β-adrenergic stimulus, was higher in Trx1-Tg in relation to wt, after 6 h of the procedure. Trx1 overexpression attenuated complex I inhibition, protein carbonylation, and loss of membrane potential, and preserved Mn superoxide dismutase activity at 24 h. Ultrastructural alterations in mitochondrial cristae were accompanied by reduced optic atrophy 1 (OPA1) fusion protein, and activation of dynamin-related protein 1 (Drp1) (fission protein) in wt mice at 24 h, suggesting mitochondrial fusion/fission imbalance. PGC-1α gene expression showed a 2.5-fold increase in Trx1-Tg at 24 h, suggesting mitochondrial biogenesis induction. Autophagy, demonstrated by electron microscopy and increased LC3-II/LC3-I ratio, was observed earlier in Trx1-Tg. In conclusion, Trx1 overexpression extends antioxidant protection, attenuates mitochondrial damage, and activates mitochondrial turnover (mitophagy and biogenesis), preserves contractile reserve and prolongs survival during sepsis.  相似文献   
58.
Diabetes-related depression (DD) is a major complication of diabetes mellitus. Our previous studies indicated that glutamate (Glu) and hippocampal neuron apoptosis are key signal and direct factor leading to diabetes-related depression, respectively. However, the accurate pathogenesis remains to be unclear. We hypothesized that diabetes-related depression might be associated with the mitophagy-mediated hippocampal neuron apoptosis, triggered by aberrant Glu-glutamate receptor2 (GluR2)-Parkin pathway. To testify this hypothesis, here the rat model of DD in vivo and in vitro were both established so as to uncover the potential mechanism of DD based on mitophagy and apoptosis. We found that DD rats exhibit an elevated glutamate levels followed by monoamine neurotransmitter deficiency and depressive-like behaviour, and DD modelling promoted autophagosome formation and caused mitochondrial impairment, eventually leading to hippocampal neuron apoptosis via aberrant Glu-GluR2-Parkin pathway. Further, in vitro study demonstrated that the simulated DD conditions resulted in an abnormal glutamate and monoamine neurotransmitter levels followed by autophagic flux increment, mitochondrial membrane potential reduction and mitochondrial reactive oxygen species and lactic dehydrogenase elevation. Interestingly, both GluR2 and mammalian target of rapamycin (mTOR) receptor blocker aggravated mitophagy-induced hippocampal neuron apoptosis and abnormal expression of apoptotic protein. In contrast, both GluR2 and mTOR receptor agonist ameliorated those apoptosis in simulated DD conditions. Our findings revealed that mitophagy-mediated hippocampal neuron apoptosis, triggered by aberrant Glu-GluR2-Parkin pathway, is responsible for depressive-like behaviour and monoamine neurotransmitter deficiency in DD rats. This work provides promising molecular targets and strategy for the treatment of DD.  相似文献   
59.
Sepsis, a severe response to infection, leads to excessive inflammation and is the major cause of mortality in intensive care units. Mitochondria have been shown to influence the outcome of septic injury. We have previously shown that MAP kinase kinase 3 (MKK3)−/− mice are resistant to septic injury and MKK3−/− macrophages have improved mitochondrial function. In this study we examined processes that lead to improved mitochondrial quality in MKK3−/− mouse embryonic fibroblasts (MEFs) and specifically the role of mitophagy in mitochondrial health. MKK3−/− MEFs had lower inflammatory cytokine release and oxidant production after lipopolysaccharide (LPS) stimulation, confirming our earlier observations. MKK3−/− MEFs had better mitochondrial function as measured by mitochondrial membrane potential (MMP) and ATP, even after LPS treatment. We observed higher mitophagy in MKK3−/− MEFs compared to wild type (WT). Transmission electron microscopy studies showed longer and larger mitochondria in MKK3−/− MEFs, indicative of healthier mitochondria. We performed a SILAC (stable isotope labeling by/with amino acids in cell culture) study to assess differences in mitochondrial proteome between WT and MKK3−/− MEFs and observed increased expression of tricarboxylic acid (TCA) cycle enzymes and respiratory complex subunits. Further, inhibition of mitophagy by Mdivi1 led to loss in MMP and increased cytokine secretion after LPS treatment in MKK3−/− MEFs. In conclusion, this study demonstrates that MKK3 influences mitochondrial quality by affecting the expression of mitochondrial proteins, including TCA cycle enzymes, and mitophagy, which consequently regulates the inflammatory response. Based on our results, MKK3 could be a potential therapeutic target for inflammatory diseases like sepsis.  相似文献   
60.
Mitochondria are cytoplasmic organelles containing their own multi-copy genome. They are organized in a highly dynamic network, resulting from balance between fission and fusion, which maintains homeostasis of mitochondrial mass through mitochondrial biogenesis and mitophagy. Mitochondrial DNA (mtDNA) mutates much faster than nuclear DNA. In particular, mtDNA point mutations and deletions may occur somatically and accumulate with aging, coexisting with the wild type, a condition known as heteroplasmy. Under specific circumstances, clonal expansion of mutant mtDNA may occur within single cells, causing a wide range of severe human diseases when mutant overcomes wild type. Furthermore, mtDNA deletions accumulate and clonally expand as a consequence of deleterious mutations in nuclear genes involved in mtDNA replication and maintenance, as well as in mitochondrial fusion genes (mitofusin-2 and OPA1), possibly implicating mtDNA nucleoids segregation. We here discuss how the intricacies of mitochondrial homeostasis impinge on the intracellular propagation of mutant mtDNA.This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号