首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   4篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   6篇
  2020年   6篇
  2019年   3篇
  2018年   10篇
  2017年   2篇
  2016年   5篇
  2015年   13篇
  2014年   12篇
  2013年   7篇
  2012年   2篇
  2011年   6篇
  2010年   5篇
排序方式: 共有86条查询结果,搜索用时 31 毫秒
31.
Triple-negative breast cancer (TNBC) is a massive threat to women''s health due to its high morbidity, malignancy, and the refractory, effective therapeutic option of TNBC is still deficient. The mitochondrial protein showed therapeutic potential on breast cancer, whereas the mechanism and downstream pathway of mitochondrial uncoupling protein 1 (UCP1) was not fully elucidated. We found that UCP1 was negatively regulated to the process of TNBC. Overexpressing UCP1 could inhibit the proliferation and metastasis of TNBC, meanwhile inducing the mitochondrial swelling and activation of mitophagy in vitro. Mitophagy activation was then assessed to elucidate whether it was downstream of UCP1 in TNBC metastasis. GSDME is the core of pyroptosis. We found that GSDME was activated in the TNBC cells when UCP1 levels were high. It regulates TNBC cell proliferation potential instead of the apoptosis process in vitro and in vivo. Our results suggested that UCP1 could inhibit the process of TNBC by activating mitophagy and pyroptosis. Impaired activation of mitophagy weakens the regulation effect of UCP1 on metastasis of TNBC, similar to the impairment of GSDME activation on the proliferation regulation of UCP1 on TNBC. UCP1 might be a novel therapeutic target of TNBC.  相似文献   
32.
The failure to trigger mitophagy is implicated in the pathogenesis of familial Parkinson disease that is caused by PINK1 or Parkin mutations. According to the prevailing PINK1-Parkin signaling model, mitophagy is promoted by the mitochondrial translocation of Parkin, an essential PINK1-dependent step that occurs via a previously unknown mechanism. Here we determined that critical concentrations of NO was sufficient to induce the mitochondrial translocation of Parkin even in PINK1 deficiency, with apparent increased interaction of full-length PINK1 accumulated during mitophagy, with neuronal nitric oxide synthase (nNOS). Specifically, optimum levels of NO enabled PINK1-null dopaminergic neuronal cells to regain the mitochondrial translocation of Parkin, which appeared to be significantly suppressed by nNOS-null mutation. Moreover, nNOS-null mutation resulted in the same mitochondrial electron transport chain (ETC) enzyme deficits as PINK1-null mutation. The involvement of mitochondrial nNOS activation in mitophagy was further confirmed by the greatly increased interactions of full-length PINK1 with nNOS, accompanied by mitochondrial accumulation of phospho-nNOS (Ser1412) during mitophagy. Of great interest is that the L347P PINK1 mutant failed to bind to nNOS. The loss of nNOS phosphorylation and Parkin accumulation on PINK1-deficient mitochondria could be reversed in a PINK1-dependent manner. Finally, non-toxic levels of NO treatment aided in the recovery of PINK1-null dopaminergic neuronal cells from mitochondrial ETC enzyme deficits. In summary, we demonstrated the full-length PINK1-dependent recruitment of nNOS, its activation in the induction of Parkin translocation, and the feasibility of NO-based pharmacotherapy for defective mitophagy and ETC enzyme deficits in Parkinson disease.  相似文献   
33.
目的:探究微囊藻毒素-LR对小鼠肝细胞线粒体功能的影响。方法:采用BALB/c小鼠作为模型动物,随机分为3组:A组,空白对照组,正常饮用水;B组,添加5g门L微囊藻毒素.LR的饮用水;C组,添加30gm微囊藻毒素-LR的饮用水。分组喂养3个月,分离小鼠肝脏、提取线粒体,采用线粒体荧光探针JC-1测定线粒体膜电位(MMP),qRT-PCR检测自噬相关基因Beclinl和Lc3α的转录水平,WesternBlot检测细胞色素c的释放,电镜观察线粒体的形态和内部结构。结果:微囊藻毒素-LR处理组的小鼠肝细胞线粒体膜电位明显下降,自噬相关基因Lc3α的转录水平上升,细胞色素C由线粒体释放到胞浆,电镜观察线粒体形态异常、内部结构被破坏。结论:微囊藻毒素-LR对小鼠肝细胞线粒体有较强的毒性作用,并引发线粒体自噬。  相似文献   
34.
Loss-of-function mutations in the genes encoding PRKN/parkin and PINK1 cause autosomal recessive Parkinson disease (PD). Seminal work in Drosophila revealed that loss of park/parkin and Pink1 causes prominent mitochondrial pathology in flight muscle and, to a lesser extent, in dopaminergic neurons. Subsequent studies in cultured mammalian cells discovered a crucial role for PRKN/PARK2 and PINK1 in selective macroautophagic removal of mitochondria (mitophagy). However, direct evidence for the existence of a PINK1-PRKN/PARK2-mediated mitophagy pathway in vivo is still scarce. Recently, we engineered Drosophila that express the mitophagy reporter mt-Keima. We demonstrated that mitophagy occurs in flight muscle cells and dopaminergic neurons in vivo and increases with aging. Moreover, this age-dependent rise depends on park and Pink1. Our data also suggested that some aspects of the mitochondrial phenotype of park- and Pink1-deficient flies are independent of the mitophagy defect, and that park and Pink1 may have multiple functions in the regulation of the integrity of these organelles. Here, we discuss implications of these findings as well as possible future applications of the mt-Keima fly model.  相似文献   
35.
The selective autophagic removal of mitochondria called mitophagy is an essential physiological signaling for clearing damaged mitochondria and thus maintains the functional integrity of mitochondria and cells. Defective mitophagy is implicated in several diseases, placing mitophagy as a target for drug development. The identification of key regulators of mitophagy as well as chemical modulators of mitophagy requires sensitive and reliable quantitative approaches. Since mitophagy is a rapidly progressing event and sub-microscopic in nature, live cell image-based detection tools with high spatial and temporal resolution is preferred over end-stage assays. We describe two approaches for measuring mitophagy in mammalian cells using stable cells expressing EGFP-LC3 – Mito-DsRed to mark early phase of mitophagy and Mitochondria-EGFP – LAMP1-RFP stable cells for late events of mitophagy. Both the assays showed good spatial and temporal resolution in wide-field, confocal and super-resolution microscopy with high-throughput adaptable capability. A limited compound screening allowed us to identify a few new mitophagy inducers. Compared to the current mitophagy tools, mito-Keima or mito-QC, the assay described here determines the direct delivery of mitochondrial components to the lysosome in real time mode with accurate quantification if monoclonal cells expressing a homogenous level of both probes are established. Since the assay described here employs real-time imaging approach in a high-throughput mode, the platform can be used both for siRNA screening or compound screening to identify key regulators of mitophagy at decisive stages.  相似文献   
36.
由于线粒体能敏感地感受机体内氧浓度的变化,缺氧时会影响线粒体氧化磷酸化过程中电子传递链的正常功能,抑制ATP生成,产生大量活性氧(ROS)。ROS蓄积导致氧化损伤细胞内脂质、DNA和蛋白质等大分子物质,线粒体肿胀,通透性转换孔开放,释放细胞色素C等促凋亡因子,最终严重影响细胞的存活。因此这些功能异常或受损线粒体是缺氧应激状态下细胞是否存活的危险因素,及时清除这些线粒体,对维持线粒体质量、数量及细胞稳态具有重要意义。线粒体自噬是近年来发现的细胞适应缺氧的一种防御性代谢过程,它通过自噬途径选择性清除损伤、衰老和过量产生ROS的线粒体,促进线粒体更新和循环利用,确保细胞内线粒体功能稳定,保护缺氧应激下细胞的正常生长发挥重要的调节作用。本文就线粒体自噬在缺氧条件下发生过程、参与相关蛋白及调节机制等方面研究进行了综述。  相似文献   
37.
摘要目的:探究微囊藻毒素-LR 对小鼠肝细胞线粒体功能的影响。方法:采用BALB/c 小鼠作为模型动物,随机分为3 组:A 组, 空白对照组,正常饮用水;B 组,添加5 g/L微囊藻毒素-LR 的饮用水;C 组,添加30 g/L 微囊藻毒素-LR 的饮用水。分组喂养3 个月,分离小鼠肝脏、提取线粒体,采用线粒体荧光探针JC-1 测定线粒体膜电位(MMP),qRT-PCR检测自噬相关基因Beclin1 和 Lc3琢的转录水平,Western Blot检测细胞色素C的释放,电镜观察线粒体的形态和内部结构。结果:微囊藻毒素-LR 处理组的小 鼠肝细胞线粒体膜电位明显下降,自噬相关基因Lc3琢的转录水平上升,细胞色素C由线粒体释放到胞浆,电镜观察线粒体形态 异常、内部结构被破坏。结论:微囊藻毒素-LR 对小鼠肝细胞线粒体有较强的毒性作用,并引发线粒体自噬。  相似文献   
38.
Mutations in PTEN-induced putative kinase 1 (PINK1) cause recessive form of Parkinson’s disease (PD). PINK1 acts upstream of parkin, regulating mitochondrial integrity and functions. Here, we show that PINK1 in combination with parkin results in the perinuclear mitochondrial aggregation followed by their elimination. This elimination is reduced in cells expressing PINK1 mutants with wild-type parkin. Although wild-type PINK1 localizes in aggregated mitochondria, PINK1 mutants localization remains diffuse and mitochondrial elimination is not observed. This phenomenon is not observed in autophagy-deficient cells. These results suggest that mitophagy controlled by the PINK1/parkin pathway might be associated with PD pathogenesis.

Structured summary

MINT-7557195: PINK1 (uniprotkb:Q9BXM7) physically interacts (MI:0915) with LC3 (uniprotkb:Q9GZQ8) by anti tag coimmunoprecipitation (MI:0007)MINT-7557109: LC3 (uniprotkb:Q9GZQ8) and PINK1 (uniprotkb:Q9BXM7) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7557121: tom20 (uniprotkb:Q15388) and PINK1 (uniprotkb:Q9BXM7) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7557138: parkin (uniprotkb:O60260), PINK1 (uniprotkb:Q9BXM7) and tom20 (uniprotkb:Q15388) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7557173: LC3 (uniprotkb:Q9GZQ8) physically interacts (MI:0915) with PINK1 (uniprotkb:Q9BXM7) by anti bait coimmunoprecipitation (MI:0006)  相似文献   
39.
摘要 目的:探讨右美托咪定发挥神经保护作用的细胞自噬和线粒体自噬机制。方法:通过对SH-SY5Y细胞进行氧糖剥夺再灌注模拟全脑的缺血再灌注损伤,将细胞随机分为7组:(1)C组:对照组;(2)OGD/R组:氧糖剥夺再灌注损伤组;(3)DEX组:右美托咪定组;(4)3MA组:3-甲基腺嘌呤组;(5)D+3MA组;(6)RAPA组:雷帕霉素组;(7)D+RAPA组。结果:与OGD/R组相比,DEX组、3MA组、D+3MA组的细胞活性、电镜下完整线粒体的数量、自噬体数量明显好于OGD/R组(P<0.05);RAPA组与OGD/R组相比上述指标无明显差异(P>0.05);而RAPA中加入右美托咪定以后,可以部分逆转RAPA的作用,细胞活性增加,完整线粒体数量增加,自噬体数量减少(P<0.05)。免疫印迹结果显示,与OGD/R组相比,DEX组、3MA组、D+3MA组LC3II/LC3I、Beclin 1表达减少,BCL-2、P62、TOM20的表达增加,RAPA组各种自噬蛋白的表达与OGD/R组相比没有统计学意义,当应用右美托咪定之后逆转了各种蛋白的表达(P<0.05)。结论:右美托咪定通过减少过度的细胞自噬和线粒体自噬发挥神经保护作用。  相似文献   
40.
After cardiac ischemia and reperfusion or reoxygenation (I/R), damaged mitochondria propagate tissue injury by promoting cell death. One possible mechanism to protect from I/R-induced injury is the elimination of damaged mitochondria by mitophagy. Here we identify new molecular events that lead to mitophagy using a cell culture model and whole hearts subjected to I/R. We found that I/R induces glyceraldehyde-3-phosphate dehydrogenase (GAPDH) association with mitochondria and promotes direct uptake of damaged mitochondria into multiorganellar lysosomal-like (LL) structures for elimination independently of the macroautophagy pathway. We also found that protein kinase C δ (PKCδ) inhibits GAPDH-driven mitophagy by phosphorylating the mitochondrially associated GAPDH at threonine 246 following I/R. Phosphorylated GAPDH promotes the accumulation of mitochondria at the periphery of LL structures, which coincides with increased mitochondrial permeability. Either inhibition of PKCδ or expression of a phosphorylation-defective GAPDH mutant during I/R promotes a reduction in mitochondrial mass and apoptosis, thus indicating rescued mitophagy. Taken together, we identified a GAPDH/PKCδ signaling switch, which is activated during oxidative stress to regulate the balance between cell survival by mitophagy and cell death due to accumulation of damaged mitochondria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号