首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18943篇
  免费   301篇
  国内免费   229篇
  19473篇
  2023年   61篇
  2022年   146篇
  2021年   168篇
  2020年   139篇
  2019年   199篇
  2018年   253篇
  2017年   159篇
  2016年   165篇
  2015年   518篇
  2014年   1560篇
  2013年   1460篇
  2012年   1566篇
  2011年   2230篇
  2010年   1954篇
  2009年   847篇
  2008年   833篇
  2007年   741篇
  2006年   674篇
  2005年   558篇
  2004年   523篇
  2003年   514篇
  2002年   297篇
  2001年   151篇
  2000年   192篇
  1999年   228篇
  1998年   268篇
  1997年   236篇
  1996年   227篇
  1995年   259篇
  1994年   240篇
  1993年   198篇
  1992年   177篇
  1991年   165篇
  1990年   136篇
  1989年   147篇
  1988年   120篇
  1987年   113篇
  1986年   84篇
  1985年   135篇
  1984年   172篇
  1983年   148篇
  1982年   155篇
  1981年   78篇
  1980年   106篇
  1979年   72篇
  1978年   26篇
  1977年   25篇
  1976年   17篇
  1973年   8篇
  1972年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
Recently, mutations in the DNAJC5 gene encoding cysteine-string protein α (CSPα) were identified to cause the neurodegenerative disorder adult-onset neuronal ceroid lipofuscinosis. The disease-causing mutations (L115R or ΔL116) occur within the cysteine-string domain, a region of the protein that is post-translationally modified by extensive palmitoylation. Here we demonstrate that L115R and ΔL116 mutant proteins are mistargeted in neuroendocrine cells and form SDS-resistant aggregates, concordant with the properties of other mutant proteins linked to neurodegenerative disorders. The mutant aggregates are membrane-associated and incorporate palmitate. Indeed, co-expression of palmitoyltransferase enzymes promoted the aggregation of the CSPα mutants, and chemical depalmitoylation solubilized the aggregates, demonstrating that aggregation is induced and maintained by palmitoylation. In agreement with these observations, SDS-resistant CSPα aggregates were present in brain samples from patients carrying the L115R mutation and were depleted by chemical depalmitoylation. In summary, this study identifies a novel interplay between genetic mutations and palmitoylation in driving aggregation of CSPα mutant proteins. We propose that this palmitoylation-induced aggregation of mutant CSPα proteins may underlie the development of adult-onset neuronal ceroid lipofuscinosis in affected families.  相似文献   
112.
Treatment of bovine pulmonary smooth muscle cells with the TxA2 mimetic, U46619 stimulated [Ca2+]i, which was inhibited upon pretreatment with apocynin (NADPH oxidase inhibitor). Pretreatment with cromakalim (KV channel opener) or nifedepine (L-VOCC inhibitor) inhibited U46619 induced increase in [Ca2+]i, indicating a role of KV-LVOCC axis in this scenario. Neither cromakalim nor nifedepine inhibited U46619 induced increase in NADPH oxidase activity, suggesting that the NADPH oxidase activation is proximal to the KV-LVOCC axis in the cells. Pretreatment with calphostin C (PKC inhibitor) markedly reduced U46619 induced increase in NADPH oxidase activity and [Ca2+]i in the cells. Calphostin C pretreatment also markedly reduced p47phox phosphorylation and translocation to the membrane and association with p22phox, a component of Cyt.b558 of NADPH oxidase in the membrane. Overall, PKC plays an important role in NADPH oxidase derived O2-mediated regulation of KV-LVOCC axis leading to an increase in [Ca2+]i by U46619 in the cells.  相似文献   
113.
Abstract: One-trial conditioning of the nudibranch mollusk Hermissenda produces short- and long-term changes in excitability (enhancement) of identified sensory neurons. To investigate the biochemical mechanisms underlying this example of plasticity, we have examined changes in protein phosphorylation at different times following the in vitro conditioning trial. Changes in the incorporation of 32PO4 into proteins were determined using two-dimensional polyacrylamide gel electrophoresis, autoradiography, and densitometry. Conditioning resulted in increases in levels of several phosphoproteins, five of which, ranging in apparent molecular mass from 22 to 55 kDa, were chosen for analysis. The increased phosphorylation of the 46- and 55-kDa phosphoproteins detected 2 h postconditioning was significantly greater than the level of phosphorylation detected in an unpaired control group, indicating that long-term enhancement is pairing specific. Statistically significant increases in phosphorylation as compared with the control group that received only light were detected immediately after conditioning (5 min) for the 55-, 46-, and 22-kDa phosphoproteins, at 1 h for the 55- and 46-kDa phosphoproteins, and at 2 h for the 55-, 46-, and 22-kDa phosphoproteins. The 46- and 55-kDa phosphoproteins are putative structural proteins, and the 22-kDa phosphoprotein is proposed to be a protein kinase C substrate previously identified in Hermissenda following multitrial classical conditioning. Time-dependent increases in protein phosphorylation may contribute to the induction and maintenance of different memory stages expressed in sensory neurons after one-trial conditioning.  相似文献   
114.
Microtubule-associated proteins regulate microtubule (MT) dynamics spatially and temporally, which is essential for proper formation of the bipolar mitotic spindle. The XMAP215 family is comprised of conserved microtubule-associated proteins that use an array of tubulin-binding tumor overexpressed gene (TOG) domains, consisting of six (A–F) Huntingtin, elongation factor 3, protein phosphatase 2A, target of rapamycin (HEAT) repeats, to robustly increase MT plus-end polymerization rates. Recent work showed that TOG domains have differentially conserved architectures across the array, with implications for position-dependent TOG domain tubulin binding activities and function within the XMAP215 MT polymerization mechanism. Although TOG domains 1, 2, and 4 are well described, structural and mechanistic information characterizing TOG domains 3 and 5 is outstanding. Here, we present the structure and characterization of Drosophila melanogaster Mini spindles (Msps) TOG3. Msps TOG3 has two unique features as follows: the first is a C-terminal tail that stabilizes the ultimate four HEAT repeats (HRs), and the second is a unique architecture in HR B. Structural alignments of TOG3 with other TOG domain structures show that the architecture of TOG3 is most similar to TOG domains 1 and 2 and diverges from TOG4. Docking TOG3 onto recently solved Stu2 TOG1· and TOG2·tubulin complex structures suggests that TOG3 uses similarly conserved tubulin-binding intra-HEAT loop residues to engage α- and β-tubulin. This indicates that TOG3 has maintained a TOG1- and TOG2-like TOG-tubulin binding mode despite structural divergence. The similarity of TOG domains 1–3 and the divergence of TOG4 suggest that a TOG domain array with polarized structural diversity may play a key mechanistic role in XMAP215-dependent MT polymerization activity.  相似文献   
115.
Rat liver casein kinase TS (Ck-TS) having quarternary structure α2β2, autophosphorylates at its 25 kDa, β-subunits, incorporating up to 1.2 mol P/mol enzyme. According to their effects on the autophosphorylation pattern the effectors of Ck-TS activity can be grouped into 3 classes: (i) inhibitors, like heparin, which also prevent the autophosphorylation of the β-subunit; (ii) stimulators possessing several amino groups (like spermine) which increase the autophosphorylation at the β-subunit; (iii) stimulators possessing several guanido groups, like protamines and related peptides, which prevent the phosphorylation of the β-subunit, while promoting the autophosphorylation of the 38 kDa α-subunit. In the presence of such polyarginyl effectors the 130 kDa Ck-TS is converted into forms with higher sedimentation coefficient.  相似文献   
116.
117.
Many experimental approaches in biology and biophysics, as well as applications in diagnosis and drug discovery, require proteins to be immobilized on solid supports. Protein microarrays, for example, provide a high-throughput format to study biomolecular interactions. The technique employed for protein immobilization is a key to the success of these applications. Recent biochemical developments are allowing, for the first time, the selective and traceless immobilization of proteins generated by cell-free systems without the need for purification and/or reconcentration prior to the immobilization step.  相似文献   
118.
In the present study, structural aspects of the two soluble transducers, HtrX and HtrXI, from the archaeon H. salinarum have been examined using UV circular dichroism and steady-state fluorescence spectroscopies. Circular dichroism (CD) data indicate that both HtrX and HtrXI exhibit salt-dependent protein folding. Under low-ionic-strength conditions (0.2 M NaCl or KCl) the CD spectra of HtrXI is similar to that of the Gdn-HCl- or urea-denatured forms and is indicative of random coil structure. In contrast, the CD spectrum of HtrX under low-ionic-strength conditions contains roughly 85% -helical character, indicating a significant degree of folding. Addition of NaCl or KCl to solutions of HtrX or HtrXI results in CD features consistent with predominately -helical character (>95%) for both proteins. In addition, the transition points (i.e., ionic strengths at which the protein converts from random coil to -helical character) are quite distinct and dependent upon the type of salt present (i.e., either NaCl or KCl). Accessibility of tryptophan residues to the solvent was also examined for both HtrX and HtrXI in both folded and unfolded states using Kl quenching. The Stern–Volmer constants obtained suggest that the tryptophans (Trp35 in HtrX and both Trp47 and Trp74 in HtrXI) are partially exposed to the solvent, indicating that they are located near the surface of the protein in all three cases. Furthermore, fluorescence quenching with the single Trp mutants Trp74AIa and Trp47AIa of HtrXI indicates different environments for these two residues.  相似文献   
119.
We have previously characterized the biogenesis of the human CD8α protein expressed in rat epithelial cells. We now describe the biosynthesis, post-translational maturation and hetero-oligomeric assembly of the human CD8α/p56lck protein complex in stable transfectants obtained from the same cell line. There were no differences in the myristilation of p56lck, or in the dimerization, O-glycosylation and transport to the plasma membrane of CD8α, between cells expressing either one or both proteins. In the doubly expressing cells, dimeric forms of CD8α established hetero-oligomeric complexes with p56lck, as revealed by co-immunoprecipitation assays performed with anti-CD8α antibody. Moreover, p56lck bound in these hetero-oligomeric complexes was endowed with auto- and hetero-phosphorylating activity. The present study shows that: (1) the newly synthesized p56lck binds rapidly to CD8α and most of the p56lck is bound to CD8α at steady state; (2) CD8α/p56lck protein complexes are formed at internal membranes as well as at the plasma membrane; and (3) about 50% of complexed p56lck reaches the cell surface.  相似文献   
120.
Contemporary enzymes are highly efficient and selective catalysts. However, due to the intrinsically very reactive nature of active sites, gratuitous secondary reactions are practically unavoidable. Consequently, even the smallest cell, with its limited enzymatic repertoire, has the potential to carry out numerous additional, very likely inefficient, secondary reactions. If selectively advantageous, secondary reactions could be the basis for the evolution of new fully functional enzymes. Here, we investigated if Escherichia coli has cryptic enzymatic activities related to thiamin biosynthesis. We selected this pathway because this vitamin is essential, but the cell's requirements are very small. Therefore, enzymes with very low activity could complement the auxotrophy of strains deleted of some bona fide thiamin biosynthetic genes. By overexpressing the E. coli's protein repertoire, we selected yjbQ, a gene that complemented a strain deleted of the thiamin phosphate synthase (TPS)-coding gene thiE. In vitro studies confirmed TPS activity, and by directed evolution experiments, this activity was enhanced. Structurally oriented mutagenesis allowed us to identify the putative active site. Remote orthologs of YjbQ from Thermotoga, Sulfolobus, and Pyrococcus were cloned and also showed thiamin auxotrophy complementation, indicating that the cryptic TPS activity is a property of this protein family. Interestingly, the thiE- and yjbQ-coded TPSs are analog enzymes with no structural similarity, reflecting distinct evolutionary origin. These results support the hypothesis that the enzymatic repertoire of a cell such as E. coli has the potential to perform vast amounts of alternative reactions, which could be exploited to evolve novel or more efficient catalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号