首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   345篇
  免费   3篇
  国内免费   3篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   7篇
  2016年   2篇
  2015年   8篇
  2014年   26篇
  2013年   10篇
  2012年   15篇
  2011年   17篇
  2010年   16篇
  2009年   21篇
  2008年   15篇
  2007年   26篇
  2006年   18篇
  2005年   19篇
  2004年   29篇
  2003年   21篇
  2002年   12篇
  2001年   1篇
  2000年   16篇
  1999年   11篇
  1998年   20篇
  1997年   5篇
  1996年   7篇
  1995年   6篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
排序方式: 共有351条查询结果,搜索用时 296 毫秒
11.
The serine protease urokinase-type plasminogen activator (uPA) promotes matrix degradation by many cell types, including the invasive extravillous trophoblast (EVT) of the human placenta. The noncatalytic amino-terminal end of uPA binds to uPA receptors (uPARs) expressed by these cells. A highly polarized expression of uPAR-bound uPA at the migration front of EVT cells in situ suggests a functional role of uPA:uPAR interaction in EVT cell migration. The present study examined whether uPA stimulates EVT cell migration, independent of proteolytic function, and investigated some of the signaling pathways involved. Using in vitro-propagated EVT cells in Transwell migration assays, both uPA and its noncatalytic amino-terminal fragment (ATF) were shown to stimulate migration through multiporous polycarbonate (pore size 8 microm) membranes. A uPAR-blocking antibody inhibited basal and ATF-stimulated migration. Migration was found to be stimulated by hypoxic conditions, which upregulates uPAR expression; this stimulation was abrogated with the uPAR-blocking antibody, indicating the role of endogenous uPA in EVT cell migration. Spectrofluorometric measurement of cytosolic calcium in cells treated with uPA and ATF demonstrated a rapid rise in [Ca2+](i), which was prevented by pretreatment of cells with thapsigargin, indicating a release from intracellular stores. Both basal and ATF-mediated migratory responses were suppressed in the presence of selective pharmacological inhibitors LY294002, U73122, and U0126, implicating the respective roles of phosphatidinylinositol 3-kinase (PI 3-K), phospholipase C (PLC), and MEK1/2 in basal and ATF-stimulated migratory capacity. Taken together, these results demonstrate that uPA:uPAR interaction stimulates EVT cell migration, independent of uPA enzymatic activity, using the mitogen-activated protein kinase pathway and calcium signaling events including the participation of PI 3-K and PLC. These findings are relevant to clinical conditions of aberrant trophoblast migration, including spontaneous abortion, preeclampsia, and choriocarcinoma.  相似文献   
12.
Excessive generation of reactive oxygen species (ROS) in the central nervous system (CNS) is a leading cause of neuronal injury. Despite yet unknown mechanisms, oxidant compounds such as H2O2 have been shown to stimulate the release of arachidonic acid (AA) in a number of cell systems. In this study, H2O2 and menadione, a compound known to release H2O2 intracellularly, were used to examine the phospholipases A2 (PLA2) responsible for AA release from primary murine astrocytes. Both H2O2 and menadione dose-dependently stimulated AA release, and the release mediated by H2O2 was completely inhibited by catalase. H2O2 also stimulated phosphorylation of extracellular signal-regulated kinases (ERK1/2) and cytosolic phospholipase A2 (cPLA2). However, complete inhibition of cPLA2 phosphorylation by U0126, an inhibitor for mitogen-activated protein kinase kinase (MEK) and GF109203x, a nonselective PKC inhibitor preferring the conventional and novel isoforms, only reduced H2O2-stimulated AA release by 50%. MAFP, a selective, active, site-directed, irreversible inhibitor of both cPLA2 and the Ca2+-independent iPLA2, nearly completely inhibited H2O2-mediated AA release; but, HELSS, a potent irreversible inhibitor of iPLA2, only inhibited H2O2-mediated AA release by 40%. Along with the observation that H2O2-mediated AA release was only partially inhibited upon chelating intracellular Ca2+ by BAPTA, these results indicate the involvement of both cPLA2 and iPLA2 in H2O2-mediated AA release in murine astrocytes.  相似文献   
13.
Proteolysis by the ubiquitin/proteasome pathway regulates the intracellular level of several proteins, some of which control cell proliferation and cell cycle progression. To determine what kinds of signaling cascades are activated or inhibited by proteasome inhibition, we treated PC12 cells with specific proteasome inhibitors and subsequently performed in-gel kinase assays. N-Acetyl-Leu-Leu-norleucinal and lactacystin, which inhibit the activity of the proteasome, induced the activation of p42/p44 mitogen-activated protein (MAP) kinases [extracellular signal-regulated kinases (ERKs) 1 and 2]. In contrast, N-acetyl-Leu-Leu-methional, which inhibits the activity of calpains, but not of the proteasome, failed to induce ERK activation. Uniquely, the kinetics of MAP kinase activation induced by proteasome inhibitors are very slow compared with those resulting from activation by nerve growth factor; ERK activation is detectable only after a 5-h treatment with the inhibitors, and its activity remained unchanged for at least until 27 h. Proteasome inhibitor-initiated ERK activation is inhibited by pretreatment with the ERK kinase inhibitor PD 98059, as well as by overexpression of a dominant-negative form of Ras. Thus, proteasome inhibitors induce sustained ERK activation in a Ras-dependent manner. Proteasome inhibitor-induced neurite outgrowth, however, is not inhibited by PD 98059, indicating that sustained activation of ERKs is not the factor responsible for proteasome inhibitor-induced morphological differentiation. Our data suggest the presence of a novel mechanism for activation of the MAP kinase cascade that involves proteasome activity.  相似文献   
14.
Regulator of G protein signaling (RGS) proteins are GTPase-activating proteins for heterotrimeric G proteins. One of the best-studied RGS proteins, RGS4, accelerates the rate of GTP hydrolysis by all G(i) and G(q) alpha subunits yet has been shown to exhibit receptor selectivity. Although RGS4 is expressed primarily in brain, its effect on modulating the activity of serotonergic receptors has not yet been reported. In the present study, transfected BE(2)-C human neuroblastoma cells expressing human 5-HT(1B) receptors were used to demonstrate that RGS4 can inhibit the coupling of 5-HT(1B) receptors to cellular signals. Serotonin and sumatriptan were found to stimulate activation of extracellular signal-regulated kinase. This activation was attenuated, but not completely inhibited, by RGS4. Similar inhibition by RGS4 of the protein kinase Akt was also observed. As RGS4 is expressed at high levels in brain, these results suggest that it may play a role in regulating serotonergic pathways.  相似文献   
15.
Agonist exposure of many G protein-coupled receptors stimulates an activation of extracellular signal-regulated protein kinases (ERKs) 1 and 2, members of the mitogen-activated protein kinase (MAPK) family. Here, we show that treatment of human embryonic kidney (HEK) 293 cells stably transfected to express the rat micro-opioid receptor (MOR1) with [D-Ala2,MePhe4,Gly5-ol]enkephalin (DAMGO) stimulated a rapid and transient (3-5-min) activation and nuclear translocation of MAPK. Exposure of these cells to the MAPK kinase 1 inhibitor PD98059 not only prevented MAPK activation but also inhibited homologous desensitization of the mu-opioid receptor. We have therefore determined the effect of PD98059 on agonist-induced mu-receptor phosphorylation. DAMGO stimulated a threefold increase in MOR1 phosphorylation within 20 min that could be reversed by the antagonist naloxone. PD98059 produced a dose-dependent inhibition of agonist-promoted mu-receptor phosphorylation with an IC50 of 20 microM. DAMGO also induced MOR1 internalization that peaked at 30 min. Confocal microscopy revealed that DAMGO-induced MOR1 internalization was also largely inhibited in the presence of PD98059. U0126, another chemically unrelated inhibitor of the MAPK cascade, mimicked the effect of PD98059 on mu-receptor phosphorylation and desensitization. MOR1 itself, however, appears to be a poor substrate for MAPK because mu-receptors immunoprecipitated from stably transfected HEK 293 cells were not phosphorylated by exogenous ERK 2 in vitro. The fact that morphine also triggered MAPK activation but did not induce MOR1 internalization indicates that receptor internalization was not required for MOR1-mediated mitogenic signaling. We conclude that MOR1 stimulates a rapid and intemalization-independent MAPK activation. Activation of the MAPK cascade in turn may not only relay mitogenic signals to the nucleus but also trigger initial events leading to phosphorylation and desensitization of the mu-opioid receptor.  相似文献   
16.
Muscarinic acetylcholine receptors (mAChRs) activate many downstream signaling pathways, some of which can lead to mitogen-activated protein kinase (MAPK) phosphorylation and activation. MAPKs play roles in regulating cell growth, differentiation, and synaptic plasticity. Here, the activation of MAPK was examined in PC12 cells endogenously expressing mAChRs. Western blot analysis using a phosphospecific MAPK antibody revealed a dose-dependent and atropine-sensitive increase in MAPK phosphorylation in cells stimulated with carbachol (CCh). The maximal response occurred after 5 min and was rapidly reduced to baseline. To investigate the receptors responsible for CCh activation of MAPK in PC12 cells, the mAChR subtypes present were determined using RT-PCR and immunoprecipitation. RT-PCR was used to amplify fragments of the appropriate sizes for m1, m4, and m5, and the identities of the bands were confirmed with restriction digests. Immunoprecipitation using subtype-specific antibodies showed that approximately 95% of the expressed receptors were m4, whereas the remaining approximately 5% were m1 and m5. A highly specific m1 toxin completely blocked MAPK phosphorylation in response to CCh stimulation. The mAChR-induced MAPK activation was abolished by protein kinase C down-regulation and partially inhibited by pertussis toxin. Although m1 represents a small proportion of the total mAChR population, pharmacological evidence suggests that m1 is responsible for MAPK activation in PC12 cells.  相似文献   
17.
Abstract: In vitro studies indicate that p42/p44MAPK phosphorylate both nuclear and cytoplasmic proteins. However, the functional targets of p42/p44MAPK activation in vivo remain unclear. To address this question, we localized activated p42/p44MAPK in hippocampus and cortex and determined their signaling effects after electroconvulsive shock treatment (ECT) in rats. Phosphorylated p42/p44MAPK content increased in the cytoplasm of hippocampal neurons in response to ECT. Consistent with this cytoplasmic localization, inhibition of ECT-induced p42/p44MAPK activation by the extracellular signal-regulated kinase kinase inhibitor PD098059 blocked phosphorylation of the cytoplasmic protein microtubule-associated protein 2c (MAP2c), but failed to inhibit the induction of the nuclear protein c-Fos in response to ECT. In contrast to hippocampal neurons, cortical neurons exhibited an increase in amount of phosphorylated p42/p44MAPK in both the nucleus and cytoplasm after ECT. Accordingly, PD098059 blocked the induction of Fos-like immunoreactivity in the nuclei of cortical neurons as well as MAP2c phosphorylation in the cytoplasm. Our data indicate that both nuclear and cytoplasmic substrates can be activated by p42/p44MAPK in vivo. However, the functional targets of p42/p44MAPK signaling depend on the precise location of p42/p44MAPK within different subcellular compartments of brain regions. These results indicate unique functional pathways of p42/p44MAPK-mediated signal transduction within different brain regions in vivo.  相似文献   
18.
All currently sequenced stress-activated protein kinases (SAPKs), extracellular signal-regulated kinases (ERKs), and other mitogen-activated protein kinases (MAPKs) were analyzed by sequence alignment, phylogenetic tree construction, and three-dimensional structure modeling in order to classify members of the MAPK family. Based on this analysis the MAPK family was divided into three subgroups (SAPKs, ERKs, and MAPK3) that consist of at least nine subfamilies. Members of a given subfamily were exclusively from animals, plants, or yeast/fungi. A single signature sequence, [LIVM][TS]XX[LIVM]XT[RK][WY]YRXPX[LIVM] [LIVM], was identified that is characteristic for all MAPKs and sufficient to distinguish MAPKs from other members of the protein kinase superfamily. This signature sequence contains the phosphorylation site and is located on loop 12 of the three-dimensional structure of MAPKs. I also identified signature sequences that are characteristic for each of the nine subfamilies of MAPKs. By modeling the three-dimensional structure of three proteins for each MAPK subfamily based on the resolved atomic structures of rat ERK2 and murine p38, it is demonstrated that amino acids conserved in all MAPKs are located primarily in the center of the protein around the catalytic cleft. I conclude that these residues are important for maintaining proper folding into the gross structure common to all MAPKs. On the other hand, amino acids conserved in a given subfamily are located mainly in the periphery of MAPKs, indicating their possible importance for defining interactions with substrates, activators, and inhibitors. Within these subfamily-specific regions, amino acids were identified that represent unique residues occurring in only a single subfamily and their location was mapped in three-dimensional structure models. These unique residues are likely to be crucial for subfamily-specific interactions of MAPKs with substrates, inhibitors, or activators and, therefore, represent excellent targets for site-directed mutagenesis experiments. Received: 13 August 1997 / Accepted: 21 November 1997  相似文献   
19.
20.

Background

Mutations in the LMNA gene encoding A-type nuclear lamins can cause dilated cardiomyopathy with or without skeletal muscular dystrophy. Previous studies have shown abnormally increased extracellular signal-regulated kinase 1/2 activity in hearts of LmnaH222P/H222P mice, a small animal model. Inhibition of this abnormal signaling activity with a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor has beneficial effects on heart function and survival in these mice. However, such treatment has not been examined relative to any standard of care intervention for dilated cardiomyopathy or heart failure. We therefore examined the effects of an angiotensin II converting enzyme (ACE) inhibitor on left ventricular function in LmnaH222P/H222P mice and assessed if adding a MEK1/2 inhibitor would provide added benefit.

Methods

Male LmnaH222P/H222P mice were treated with the ACE inhibitor benazepril, the MEK1/2 inhibitor selumetinib or both. Transthoracic echocardiography was used to measure left ventricular diameters and fractional shortening was calculated.

Results

Treatment of LmnaH222P/H222P mice with either benazepril or selumetinib started at 8 weeks of age, before the onset of detectable left ventricular dysfunction, lead to statistically significantly increased fractional shortening compared to placebo at 16 weeks of age. There was a trend towards a great value for fractional shortening in the selumetinib-treated mice. When treatment was started at 16 weeks of age, after the onset of left ventricular dysfunction, the addition of selumetinib treatment to benazepril lead to a statistically significant increase in left ventricular fractional shortening at 20 weeks of age.

Conclusions

Both ACE inhibition and MEK1/2 inhibition have beneficial effects on left ventricular function in LmnaH222P/H222P mice and both drugs together have a synergistic benefit when initiated after the onset of left ventricular dysfunction. These results provide further preclinical rationale for a clinical trial of a MEK1/2 inhibitor in addition to standard of care in patients with dilated cardiomyopathy caused by LMNA mutations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号