首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19476篇
  免费   1607篇
  国内免费   995篇
  2024年   56篇
  2023年   328篇
  2022年   515篇
  2021年   648篇
  2020年   714篇
  2019年   798篇
  2018年   868篇
  2017年   648篇
  2016年   677篇
  2015年   787篇
  2014年   941篇
  2013年   1242篇
  2012年   607篇
  2011年   818篇
  2010年   654篇
  2009年   845篇
  2008年   870篇
  2007年   903篇
  2006年   789篇
  2005年   683篇
  2004年   619篇
  2003年   582篇
  2002年   523篇
  2001年   348篇
  2000年   325篇
  1999年   343篇
  1998年   393篇
  1997年   319篇
  1996年   310篇
  1995年   334篇
  1994年   326篇
  1993年   285篇
  1992年   285篇
  1991年   259篇
  1990年   230篇
  1989年   251篇
  1988年   187篇
  1987年   188篇
  1986年   175篇
  1985年   215篇
  1984年   233篇
  1983年   152篇
  1982年   164篇
  1981年   149篇
  1980年   126篇
  1979年   116篇
  1978年   59篇
  1977年   57篇
  1976年   53篇
  1975年   26篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Summary Translation of mitochondrial cytochrome b mRNA in yeast is activated by the product of the nuclear gene CBS1. CBS1 encodes a 27 kDa precursor protein, which is cleaved to a 24 kDa mature protein during the import into isolated mitochondria. The sequences required for mitochondrial import reside in the amino-terminal end of the CBS1 precursor. Deletion of the 76 amino-terminal amino acids renders the protein incompetent for mitochondrial import in vitro and non-functional in vivo. When present on a high copy number plasmid and under the control of a strong yeast promoter, biological function can be restored by this truncated derivative. This observation indicates that the CBS1 protein devoid of mitochondrial targeting sequences can enter mitochondria in vivo, possibly due to a bypass of the mitochondrial import system.  相似文献   
82.
Differences in water binding were measured in the leaf cells ofMesembryanthemum crystallinum L. plants grown under high-salinity conditions by using nuclear-magnetic-resonance (NMR) imaging. The 7-Tesla proton NMR imaging system yielded a spatial resolution of 20·20·100 m3. Images recorded with different spin-echo times (4.4 ms to 18 ms) showed that the water concentrations in the bladder cells (located on the upper and lower leaf surface), in the mesophyll cells and in the water-conducting vessels were nearly identical. All of the water in the bladder cells and in the water-conducting vessels was found to be mobile, whilst part of the water in the mesophyll cells was bound. Patches of mesophyll cells could be identified which bound water more strongly than the surrounding mesophyll cells. Optical investigations of leaf cross-sections revealed two types of mesophyll cells of different sizes and chloroplast contents. It is therefore likely that in the small-sized mesophyll cells water is strongly bound. A long-term asymmetric water exchange between the mesophyll cells and the bladder cells during Crassulacean acid metabolism has been described in the literature. The high density of these mesophyll cells in the lower epidermis is a possible cause of this asymmetry.Abbreviations CAM Crassulacean acid metabolism - NMR nuclear magnetic resonance - TE spin-echo time  相似文献   
83.
Summary Certain physicochemical properties of rice mitochondrial DNA (mtDNA) were determined. Certain low-molecular-weight mtDNA bands were found in addition to the major mtDNA band. Rice mtDNA appeared in the electron microscope as a collection of linear molecules with heterogeneous length in the range of 1–156 kb. The major distribution area was 60–105 kb. A small fraction (less than 5%) of rice mtDNA was found in the form of a circular molecule. Some molecules had the appearance of being supercoiled. Replication fork structures were found in both circular and linear mtDNA molecules. In one rice species, Jin Nante, 15 different circular molecules were found. Rice mtDNA was digested with different restriction enzymes. The total molecular weight of rice mtDNA was calculated to be about 300 kb according to the data of restriction enzyme digestion and electron microscopy.  相似文献   
84.
Summary Fusion of leaf protoplasts from an inbred line of Brassica oleracea ssp. botrytis (cauliflower, n=9) carrying the Ogura (R1) male sterile cytoplasm with hypocotyl protoplasts of B. campestris ssp. oleifera (cv Candle, n=10) carrying an atrazine-resistant (ATR) cytoplasm resulted in the production of synthetic B. napus (n=19). Thirty-four somatic hybrids were produced; they were characterized for morphology, phosphoglucose isomerase isoenzymes, ribosomal DNA hybridization patterns, chromosome numbers, and organelle composition. All somatic hybrids carried atrazine-resistant chloroplasts derived from B. campestris. The mitochondrial genomes in 19 hybrids were examined by restriction endonuclease and Southern blot analyses. Twelve of the 19 hybrids contained mitochondria showing novel DNA restriction patterns; of these 12 hybrids, 5 were male sterile and 7 were male fertile. The remaining hybrids contained mitochondrial DNA that was identical to that of the ATR parent and all were male fertile.  相似文献   
85.
Summary Mitochondrial DNA was isolated from leaf tissue of both the cytoplasmic male sterile line of Indica rice variety V41, which carries wild abortive (WA) cytoplasm, and from the corresponding maintainer line. In addition to the main mitochondrial DNA, four small plasmid-like DNA molecules were detected in both the male sterile and fertile lines. Restriction analysis of total mitochondrial DNA from the male sterile and fertile lines showed DNA fragments unique to each. Our findings suggest that the four small mitochondrial DNA (mtDNA) molecules are conserved when WA cytoplasm is transferred into different nuclear backgrounds. However, there is no simple correlation between the presence/ absence of small mitochondrial DNA molecules and the expression of WA cytoplasmic male sterility (CMS).  相似文献   
86.
Summary Chloroplast and mitochondrial DNAs have been examined by comparison of restriction enzyme patterns in asymmetric hybrid plants, resulting from the fusion between leaf mesophyll protoplasts of Nicotiana tabacum (Solanaceae), and irradiated cell culture protoplasts of Daucus carota (Umbellifereae). These somatic hybrids with normal tobacco morphology were selected as a consequence of the transfer of methotrexate and 5-methyltryptophan resistance from carrot to tobacco. The restriction patterns of chloroplast DNAs in somatic hybrids were indistinguishable from the tobacco parent. However, we found somatic hybrids with mitochondrial DNA significantly different from either parent, as judged by analysis of fragment distribution after restriction enzyme digestion. The possible formation of altered mitochondrial DNA molecules as the result of parasexual hybrid production between two phylogenetically highly divergent plant species will be discussed.  相似文献   
87.
Summary The induction, growth and regeneration of sugar beet callus to whole plants were all found to be highly genotype-specific. Regenerants of one line (of sterile cytoplasm) were obtained and a study of the chloroplast and mitochondrial DNA in these somaclones was undertaken by gel electrophoresis and cosmid hybridization. In one somaclone a rearrangement in the mitochondrial genome was observed; the novel arrangement of this part of the genome was identical to the corresponding area of the genome of the normal cytoplasm though it was otherwise of sterile type. This suggests that mitochondrial DNA may have a propensity to undergo certain types of rearrangement.  相似文献   
88.
Summary We compared Brassica campestris mitochondrial and chloroplast DNAs from whole plants and from a 2-year-old cell culture. No differences were observed in the chloroplast DNAs (cpDNAs), whereas the culture mitochondrial DNA (mtDNA) was extensively altered. Hybridization analysis revealed that the alterations are due entirely to rearrangement. At least two inversions and one large duplication are found in the culture mtDNA. The duplication element is shown to have the usual properties of a plant mtDNA high frequency recombination repeat. The culture mtDNA exists as a complex heterogeneous population of rearranged and unrearranged molecules. Some of the culture-associated rearranged molecules are present in low levels in native plant tissue and appear to have sorted out and amplified in the culture. Other mtDNA rearrangements may have occurred de novo. In addition to alterations of the main mitochondrial genome, an 11.3 kb linear mtDNA plasmid present in whole plants is absent from the culture. Contrary to findings in cultured cells of other plants, small circular mtDNA molecules were not detected in the B. campestris cell culture.  相似文献   
89.
Abstract Water storage and nocturnal increases in osmotic pressure affect the water relations of the desert succulent Ferocactus acanthodes, which was studied using an electrical circuit analog based on the anatomy and morphology of a representative individual. Transpiration rates and osmotic pressures over a 24-h period were used as input variables. The model predicted water potential, turgor pressure and water flow for various tissues. Plant capacitances, storage resistances and nocturnal increases in osmotic pressure were varied to determine their role in the water relations of this dicotyledonous succulent. Water coming from storage tissues contributed about one-third of the water transpired at night: the majority of this water came from the nonphotosynthetic, water storage parenchyma of the stem. Time lags of 4 h were predicted between maximum transpiration and maximum water uptake from the soil. Varying the capacitance of the plant caused proportional changes in osmotically driven water movement but changes in storage resistance had only minor effects. Turgor pressure in the chlorenchyma depended on osmotic pressure, but was fairly insensitive to doubling or halving of the capacitance or storage resistance of the plant. Water uptake from the soil was only slightly affected by osmotic pressure changes in the chlorenchyma. For this stem succulent, the movement of water from the chlorenchyma to the xylem and the internal redistribution of water among stem tissues were dominated by nocturnal changes in chlorenchyma osmotic pressure, not by transpiration.  相似文献   
90.
Recent experiments show that membrane ATPases are capable of absorbing free energy from an applied oscillating electric field and converting it to chemical bond energy of ATP or chemical potential energy of concentration gradients. Presumably these enzymes would also respond to endogenous transmembrane electric fields of similar intensity and waveform. A mechanism is proposed in which energy coupling is achieved via Coulombic interaction of an electric field and the conformational equilibria of an ATPase. Analysis indicates that only an oscillating or fluctuating electric field can be used by an enzyme to drive a chemical reaction away from equilibrium.In vivo, the stationary transmembrane potential of a cell must be modulated to become locally oscillatory if it is to derive energy and signal transduction processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号