首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10132篇
  免费   586篇
  国内免费   634篇
  2024年   29篇
  2023年   189篇
  2022年   293篇
  2021年   375篇
  2020年   302篇
  2019年   427篇
  2018年   302篇
  2017年   298篇
  2016年   293篇
  2015年   417篇
  2014年   603篇
  2013年   746篇
  2012年   370篇
  2011年   396篇
  2010年   303篇
  2009年   433篇
  2008年   493篇
  2007年   433篇
  2006年   464篇
  2005年   413篇
  2004年   392篇
  2003年   338篇
  2002年   284篇
  2001年   255篇
  2000年   216篇
  1999年   221篇
  1998年   205篇
  1997年   169篇
  1996年   165篇
  1995年   161篇
  1994年   184篇
  1993年   146篇
  1992年   132篇
  1991年   130篇
  1990年   124篇
  1989年   104篇
  1988年   101篇
  1987年   99篇
  1986年   69篇
  1985年   62篇
  1984年   58篇
  1983年   25篇
  1982年   43篇
  1981年   31篇
  1980年   19篇
  1979年   14篇
  1978年   12篇
  1977年   3篇
  1976年   3篇
  1974年   4篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
941.
House-cleaning enzymes protect cells from the adverse effects of noncanonical metabolic chemical compounds. The Escherichia coli nucleotide phosphatase YjjG (B4374, JW4336) functions as a house-cleaning phosphatase in vivo. YjjG protects the cell against noncanonical pyrimidine derivatives such as 5-fluoro-2'-deoxyuridine (5-FdUridine), 5-fluorouridine, 5-fluoroorotic acid (5-FOA), 5-fluorouracil, and 5-aza-2'-deoxycytidine. YjjG prevents the incorporation of potentially mutagenic nucleotides into DNA as shown for 5-bromo-2'-deoxyuridine (BrdU). Its enzymatic activity in vitro towards noncanonical 5-fluoro-2'-deoxyuridine monophosphate (5-FdUMP) is higher than towards canonical thymidine monophosphate (dTMP). The closest homolog in humans, HDHD4, does not show a protective effect against noncanonical nucleotides, excluding an involvement of HDHD4 in resistance against noncanonical nucleotides used for cancer chemotherapy. The substrate spectrum of YjjG suggests that its in vivo substrates are noncanonical pyrimidine derivatives, which might also include oxidized nucleobases such as 5-formyluracil and 5-hydroxyuracil.  相似文献   
942.
To increase our understanding of the impact of land use/cover changes on soil microbial decomposition genes involved in organic carbon decomposition, we analyzed soil samples in four sites with different land cover/use histories in a subalpine region of western Sichuan. One site was in a primitive Abies faxoniana forest, the second and the third sites were spruce plantations established in 1960's and 1980's, respectively, and the fourth site was in a cropland dating back to 1960's. The genomic DNA from the microbial community was isolated and hybridized against a functional gene microarray containing 1,961 probes. There were 39, 62, 41, and 28 gene probes with statistically significant positive signals and the gene diversity index (H') values were 3.59, 4.04, 3.70 and 3.16 in primitive forest, spruce plantations established in 1960s and 1980s and cropland, respectively. The results suggested that the number of functional genes and the gene diversity index were correlated with increasing amounts of soil organic carbon, except in the primitive Abies faxoniana forest site. cluster analysis demonstrated that primitive forest soil was clustered more closely to soil from the spruce plantation established in 1960s.  相似文献   
943.
The evolution of bacterial pathogens from nonpathogenic ancestors is marked principally by the acquisition of virulence gene clusters on plasmids and pathogenicity islands via horizontal gene transfer. The flip side of this evolutionary force is the equally important adaptation of the newly minted pathogen to its new host niche. Pathoadaptive mutations take the form of modification of gene expression such that the pathogen is better fit to survive within the new niche. This mini-review describes the concept of pathoadaptation by loss of gene function. In this process, genes that are no longer compatible with the novel lifestyle of the pathogen are selectively inactivated either by point mutation, insertion, or deletion. These genes are called 'antivirulence genes'. Selective pressure sometimes leads to the deletion of large regions of the genome that contain antivirulence genes generating 'black holes' in the pathogen genome. Inactivation of antivirulence genes leads to a pathogen that is highly adapted to its host niche. Identification of antivirulence genes for a particular pathogen can lead to a better understanding of how it became a pathogen and the types of genetic traits that need to be silenced in order for the pathogen to colonize its new host niche successfully.  相似文献   
944.
Many attempts have been made to recognise divisions within Acropora, the most diverse reef building coral genus on modern reefs, but only subgenera Acropora and Isopora are currently recognised. In this paper, morphological and genetic analyses, and study of reproductive mode and anatomy, demonstrate that an endemic Indonesian species A. (Acropora) togianensis, Wallace, 1997, belongs to Isopora. Despite the presence of a clear central axial corallite (indicating sub-genus Acropora), this species has supplementary axial corallites, broods planula larvae rather than broadcast-spawning for external fertilisation and develops stalked ova: all characters in common with the type species of subgenus Isopora A. (Isopora) palifera and the other species for which such data are available, A. (I.) cuneata and A. (I.) brueggemanni. Phylogenies are based on the protein-coding genes, mitochondrial cytochrome b (cytb) and nuclear histone 2a and 2b (h2ab) also group A. togianensis with these Isoporans. High bootstrapping and Bayesian support in the major lineages of the family Acroporidae demonstrate significant differences between Isopora (including A. togianensis) and Acropora. As the type species of both subgenera, A. (Acropora) muricata (Linneaus 1758) and A. (Isopora) palifera (Lamarck, 1816) are used in these analyses, elevation of Isopora Studer, 1878 to genus is formally proposed.  相似文献   
945.
946.
947.
Although sexual selection has been predominantly used to explain the rapid evolution of sexual traits, eggs of oviparous organisms directly face both the challenges of sexual selection as well as natural selection (environmental challenges, survival in niches, etc.). Being the outermost membrane in most insect eggs, the chorion layer is the interface between the embryo and the environment, thereby serving to protect the egg. Adaptive ecological radiations such as divergence in ovipositional substrate usage and host-plant specializations can therefore influence the evolution of eggshell proteins. We can hypothesize that proteins localized on the outer eggshell may be affected to a greater degree by ecological challenges compared with inner eggshell proteins, and therefore, proteins localized in the outer eggshell (chorion membrane) may evolve differently (faster) than proteins localized in the inner egg membrane (vitelline membrane). We compared the evolutionary divergence of vitelline with chorion membrane proteins in species of the melanogaster subgroup and found that chorion proteins as a group are indeed evolving faster than vitelline membrane proteins. At least one vitelline membrane protein (Vm32E), specifically localized on the outer eggshell, is also evolving faster than other vitelline membrane proteins suggesting that all proteins localized on the outer eggshell may be evolving rapidly. We also found evidence that specific codons in chorion proteins cp15 and cp16 are evolving under positive selection. Polymorphism surveys of cp16 revealed inflated levels of divergence relative to polymorphism in specific regions of the gene, indicating that these regions are under strong selection. At the morphological level, we found notable difference in eggshell surface morphologies between specialist (Drosophila sechellia and Drosophila erecta) and generalist species of Drosophila. We do not know if any of the chorion proteins actually interact with spermatozoids, therefore leaving the possibility of rapid evolution through gametic interaction wide open. At this point, however, our results support previous suggestions that divergences in ecology, particularly, ovipositional substrate divergences may be a strong force driving the evolution of eggshell proteins.  相似文献   
948.
The presence of Supressor of variegation-Enhanser of zeste-Trithorax (SET) domain genes in bacteria is a current paradigm for lateral genetic exchange between eukaryotes and prokaryotes. Because a major function of SET domain proteins is the chemical modification of chromatin and bacteria do not have chromatin, there is no apparent functional requirement for the existence of bacterial SET domain genes. Consequently, their finding in only a small fraction of pathogenic and symbiotic bacteria was taken as evidence that bacteria have obtained the SET domain genes from their hosts. Furthermore, it was proposed that the products of the genes would, most likely, be involved in bacteria-host interactions. The broadened scope of sequenced bacterial genomes to include also free-living and environmental species provided a larger sample to analyze the bacterial SET domain genes. By phylogenetic analysis, examination of individual chromosomal regions for signs of insertion, and evaluating the chromosomal versus SET domain genes' GC contents, we provide evidence that SET domain genes have existed in the bacterial domain of life independently of eukaryotes. The bacterial genes have undergone an evolution of their own unconnected to the evolution of the eukaryotic SET domain genes. Initial finding of SET domain genes in predominantly pathogenic and symbiotic bacteria resulted, most probably, from a biased sample. However, a lateral transfer of SET domain genes may have occurred between some bacteria and a family of Archaea. A model for the evolution and distribution of SET domain genes in bacteria is proposed.  相似文献   
949.
In the current study, the microbial ecology of weathered hydrocarbon and heavy metal contaminated soil undergoing phytoremediation was studied. The relationship of functional diversity, measured as carbon source utilisation in Biolog plates and extracellular enzymatic activities, and genetic diversity of bacteria was evaluated. Denaturing gradient gel electrophoresis was used for community analyses at the species level. Bulk soil and rhizosphere soil from pine and poplar plantations were analysed separately to determine if the plant rhizosphere impacted hydrocarbon degradation. Prevailing microbial communities in the field site were both genetically and metabolically diverse. Furthermore, both tree rhizosphere and fertilisation affected the compositions of these communities and increased activities of extracellular aminopeptidases. In addition, the abundance of alkane hydroxylase and naphthalene dioxygenase genes in the communities was low, but the prevalence of these genes was increased by the addition of bioavailable hydrocarbons. Tree rhizosphere communities had greater hydrocarbon degradation potential than those of bulk soil. Hydrocarbon utilising communities were dominated generally by the species Ralstonia eutropha and bacteria belonging to the genus Burkholderia. Despite the presence of viable hydrocarbon-degrading microbiota, decomposition of hydrocarbons from weathered hydrocarbon contaminated soil over four years, regardless of the presence of vegetation, was low in unfertilised soil. Compost addition enhanced the removal of hydrocarbons.  相似文献   
950.
Neisseria meningitidis, or the meningococcus, is the source of significant morbidity and mortality in humans worldwide. Even though mutability has been linked to the occurrence of outbreaks of epidemic disease, meningococcal DNA repair pathways are poorly delineated. For the first time, a collection of meningococcal disease-associated isolates has been demonstrated to express constitutively the DNA glycosylases MutY and Fpg in vivo. DNA sequence analysis showed considerable variability in the deduced amino acid sequences of MutS and Fpg, while MutY and RecA were highly conserved. Interestingly, multi-locus sequence typing demonstrated a putative link between the pattern of amino acid substitutions and levels of spontaneous mutagenicity in meningococcal strains. These results provide a basis for further studies aimed at resolving the genotype/phenotype relationships of meningococcal genome variability and mutator activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号