首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   23篇
  国内免费   13篇
  151篇
  2023年   6篇
  2021年   7篇
  2020年   7篇
  2019年   8篇
  2018年   6篇
  2017年   8篇
  2016年   8篇
  2015年   12篇
  2014年   9篇
  2013年   7篇
  2012年   10篇
  2011年   11篇
  2010年   5篇
  2009年   14篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   4篇
  1992年   2篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1985年   1篇
  1973年   1篇
排序方式: 共有151条查询结果,搜索用时 15 毫秒
71.
Miscanthus is an interesting raw material for pulp production, it is a high yield low maintenance plant with a high cellulose and hemicellulose content. Its semichemical pulp can be beneficial in paper for cardboard production process, which nowadays is usually made from secondary fibers, by increasing the mechanical properties of the paper produced. In this study, the influence of the percentage of NaOH used related to the dry Miscanthus weight, digestion time and refining time on some pulp and paper properties have been studied and compared with pulp obtained from commercial fluting paper (CF). Fiber size distribution of the Miscanthus pulp was found to contain a higher fines (less than 0.2 mm) percentage than the CF pulp. Hand-sheets made from Miscanthus pulp showed better mechanical properties than the ones made with the CF pulp. CMT, RCT and CCT indexes were higher when using 100% Miscanthus pulp or mixtures of Miscanthus and CF pulp. The only property which worsened was Gurley porosity. Of the three operational variables changed, refining time exerts the most significant influence on the pulp and paper properties measured.  相似文献   
72.
Changes in soil organic carbon under biofuel crops   总被引:1,自引:0,他引:1  
One potentially significant impact of growing biofuel crops will be the sequestration or release of carbon (C) in soil. Soil organic carbon (SOC) represents an important C sink in the lifecycle C balances of biofuels and strongly influences soil quality. We assembled and analyzed published estimates of SOC change following conversion of natural or agricultural land to biofuel crops of corn with residue harvest, sugarcane, Miscanthus x giganteus , switchgrass, or restored prairie. We estimated SOC losses associated with land conversion and rates of change in SOC over time by regressing net change in SOC relative to a control against age since establishment year. Conversion of uncultivated land to biofuel agriculture resulted in significant SOC losses – an effect that was most pronounced when native land was converted to sugarcane agriculture. Corn residue harvest (at 25–100% removal) consistently resulted in SOC losses averaging 3–8 Mg ha−1 in the top 30 cm, whereas SOC accumulated under all four perennial grasses, with SOC accumulation rates averaging <1 Mg ha−1 yr−1 in the top 30 cm. More intensive harvests led to decreased C gains or increased C losses – an effect that was particularly clear for residue harvest in corn. Direct or indirect conversion of previously uncultivated land for biofuel agriculture will result in SOC losses that counteract the benefits of fossil fuel displacement. Additionally, SOC losses under corn residue harvest imply that its potential to offset C emissions may be overestimated, whereas SOC sequestration under perennial grasses represents an additional benefit that has rarely been accounted for in life cycle analyses of biofuels.  相似文献   
73.
We implemented a spatial application of a previously evaluated model of soil GHG emissions, ECOSSE, in the United Kingdom to examine the impacts to 2050 of land‐use transitions from existing land use, rotational cropland, permanent grassland or woodland, to six bioenergy crops; three ‘first‐generation’ energy crops: oilseed rape, wheat and sugar beet, and three ‘second‐generation’ energy crops: Miscanthus, short rotation coppice willow (SRC) and short rotation forestry poplar (SRF). Conversion of rotational crops to Miscanthus, SRC and SRF and conversion of permanent grass to SRF show beneficial changes in soil GHG balance over a significant area. Conversion of permanent grass to Miscanthus, permanent grass to SRF and forest to SRF shows detrimental changes in soil GHG balance over a significant area. Conversion of permanent grass to wheat, oilseed rape, sugar beet and SRC and all conversions from forest show large detrimental changes in soil GHG balance over most of the United Kingdom, largely due to moving from uncultivated soil to regular cultivation. Differences in net GHG emissions between climate scenarios to 2050 were not significant. Overall, SRF offers the greatest beneficial impact on soil GHG balance. These results provide one criterion for selection of bioenergy crops and do not consider GHG emission increases/decreases resulting from displaced food production, bio‐physical factors (e.g. the energy density of the crop) and socio‐economic factors (e.g. expenditure on harvesting equipment). Given that the soil GHG balance is dominated by change in soil organic carbon (SOC) with the difference among Miscanthus, SRC and SRF largely determined by yield, a target for management of perennial energy crops is to achieve the best possible yield using the most appropriate energy crop and cultivar for the local situation.  相似文献   
74.
Amplified fragment length polymorphism (AFLP) and inter-simple sequence repeat markers were employed to characterize a genetic resource collection of Miscanthus, a grass under trial in Europe as a biomass crop. The 26 polymorphic markers produced by two ISSR fingerprinting primers were able to discriminate taxa and identify putative clones. AFLP fingerprints were fully reproducible and produced a larger number of markers for the three primer pairs tested, of which 998 were polymorphic (representing 79.3% of all bands). AFLP markers distinguished species, infra-specific taxa (varieties and cultivars) and putatively clonal material. They were also used to assess the inter-relationships of the taxa, to investigate the origin of important hybrid plants and to estimate the overall level of genetic variation in the collection. They were useful for assessing the species status of certain taxa such as M. transmorrisonensis, an endemic from Taiwan that was clearly distinct from M. sinensis; whereas other taxa of disputed species status, such as M. condensatus and M. yakushimanum were not genetically distinct from M. sinensis. The AFLP markers detected a high degree of infra-specific variation and allowed subdivisions of the genetic resource collection to be made, particularly within M. sinensis.  相似文献   
75.
The shoot configuration of each monoclonal patch of phalanx-forming tallgrass, Miscanthus sinensis, is characterized by the formation of a fairy ring, which forms as the result of developing vacant inner areas. One large-sized M.sinensis patch (patch L), observed over a 9-year survey period, underwent lateral expansion in almost all directions as a result of peripheral shoot births. In the year after the shoots in each part of patch L reached a maximum density (Dmax), the number of shoots decreased by approximately 20% per year. However, the overall number of within-patch shoots was stable during the survey because the patch area increased at the periphery. Twelve patches (>900cm2 in area) with orthotropic shoots were selected to observe the distribution pattern of within-patch shoots, and the patch areas were divided into three parts: the exterior, intermediate and interior areas. In 10 of these 12 patches, shoot densities were lowest in the interior areas and highest in the exterior areas, which led to ring formation. The shoot density of each subarea was inversely related to the age of the subarea. This raises the possibility that in any part of these patches, shoot densities decrease annually from Dmax in a similar way.  相似文献   
76.
廖剑锋  易自力  李世成  肖亮 《生态学报》2020,40(22):8297-8305
双药芒(Miscanthus nudipes)是一种适应寒冷和干旱环境的芒属植物,具备驯化成具有生态修复、观赏等多功能植物的潜力。在双药芒现有分布记录的基础上,采用Maxent模型构建其在末次间冰期、末次盛冰期、现代以及未来(2070年)的潜在分布格局,在评价环境因子对其分布模型影响的前提下,定量分析不同生态气候情景下双药芒适生区域的变化。结果表明:(1)温度变化方差在440—645,最冷月份最低温在-8.5—0℃,年温变化范围在22—30℃,5月降水量在70—115 mm,海拔范围在1630—3750 m,6月太阳辐射小于15800 kJ m-2 d-1时适宜双药芒的生长和分布。其中,温度变化方差是影响双药芒地理分布格局的关键性气候限制条件。(2)双药芒现代适生区面积为632184.45 km2,主要分布在四川省、云南省、西藏自治区、贵州省、陕西省、甘肃省、重庆市、湖北省和河南省。四川省中部地区、云南的北部和西藏的东部是分布中心。(3)从末次间冰期到未来2070年低排放情景下潜在适生面积将缩减到546745.02 km...  相似文献   
77.
邱敦宽  袁志前 《生态学杂志》1989,8(3):69-72,F004
荻(Miscanthus sacchariflorus)是我国重要的制浆造纸原料和轻工业纤维原料。为洞庭湖区特有的自然资源。根据荻芦生物学群体特性和洞庭湖区自然条件,以生态理论指导,可加速荻田建设。作者从1985年以来,多次调查研究了洞庭湖生态因子和荻田生产现状,现根据调查研究资料,从生态平衡角度对洞庭湖荻田建设提出初步探讨。  相似文献   
78.
Himken  M.  Lammel  J.  Neukirchen  D.  Czypionka-Krause  U.  Olfs  H.-W. 《Plant and Soil》1997,189(1):117-126
There is increasing interest in cultivation of Miscanthus as a source of renewable energy in Europe, but there is little information on its nutrient requirements. Our aim was to determine the nutrient requirement of an established Miscanthus crop through a detailed study of nutrient uptake and nutrient remobilization between plant parts during growth and senescence. Therefore dry matter of rhizomes and shoots as well as N, P, K and Mg concentration under three N fertilizer rates (0, 90, and 180 kg N ha-1) were measured in field trials in 1992/93 and at one rate of 100 kg N h-1 in 1994/95.Maximum aboveground biomass in an established Miscanthus crop ranged between 25-30 t dry matter ha-1 in the September of both trial years. Due to senescence and leaf fall there was a 30% loss in dry matter between September and harvest in March. N fertilization had no effect on crop yield at harvest. Concentrations of N, P, K and Mg in shoots were at a maximum at the beginning of the growing period in May and decreased thereafter while concentrations in rhizomes stayed fairly constant throughout the year and were not affected by N fertilization.Nutrient mobilization from rhizomes to shoots - defined as the maximum change in nutrient content in rhizomes from the beginning of the growth period measured in 1992/93 was 55 kg N ha-1, 8 kg P ha-1, 39 kg K ha-1 and 11 kg Mg ha-1. This is equivalent to 21 N, 36 P, 14 K and 27 Mg of the maximum nutrient content of the shoots. Nutrient remobilization from shoots to rhizomes defined as the increase in nutrient content of rhizomes between September and March measured in 1994/95 was 101 kg N ha-1, 9 kg P ha-1, 81 kg K ha-1 and 8 kg Mg ha-1 equivalent to 46 N, 50 P, 30 K and 27 Mg of nutrient content of shoots in September. Results showed that nutrient remobilization within the plant needs to be considered when calculating nutrient balances and fertilizer recommendations.  相似文献   
79.
李文  王鑫  潘艺雯  刘以珍  何亮  张欢  应智霞  刘颖  葛刚 《生态学报》2018,38(9):3014-3021
水淹深度是影响湿地植物生长和繁殖的关键因子,不同湿地植物对淹水深度存在着不同响应。然而,在水情不断变化的背景下,鄱阳湖洲滩湿地植物种群和群落如何变化还不清楚。为了探究淹水深度对湿地植物生长的影响,并预测鄱阳湖洲滩湿地植被分布的趋势,采用控制实验模拟了不同水淹深度(0、0.5、1 m和2 m)下鄱阳湖湿地3种优势植物(灰化薹草(Carex cinerascens)、南荻(Miscanthus lutarioriparius)和虉草(Phalaris arundinacea))的生长和繁殖情况。实验结果表明:1)水淹对灰化薹草总生物量的影响最显著。遭受水淹时,灰化薹草把大部分的生物量集中在地下部分;随着水淹深度逐渐增加,南荻的生物量逐渐减少;不同深度水淹对虉草生物量没有产生显著影响(P0.05)。就生物量而言,虉草对水淹的适应性强于其他两种植物。2)不同水淹深度下,灰化薹草的株高都显著降低;而南荻只在2 m水淹梯度下株高才显著降低。在枯水年时,下降的水位有利于南荻向较低高程迁移。3)不同深度水淹对灰化薹草的分株没有产生显著影响(P0.05);而虉草在经过2 m水淹后分株数显著高于其他水淹深度。在丰水年时,相比于灰化薹草和南荻,升高的水位对虉草的繁殖影响较小。在一个水位周期性变化的湿地生态系统中,不同深度的水淹对植物的生长及退水后的繁殖产生了严重影响,研究结果为预测水文变化对湿地植被的生存和分布提供了重要的依据。  相似文献   
80.
Species in the Miscanthus genus have been proposed as biofuel crops that have potential to mitigate elevated atmospheric carbon dioxide (CO2) levels and nitrous oxide (N2O) and methane (CH4) emissions. Miscanthus sinensis is widespread throughout Japan and has been used for biomass production for centuries. We assessed the carbon (C) budget and N2O and CH4 emissions over the growing season for 2 years in a M. sinensis‐dominated grassland that was naturally established around 1972 in Tomakomai, Hokkaido, Japan, which is near the northern limit for M. sinensis grassland establishment on Andisols. Average C budget was ?0.31 Mg C ha?1, which indicates C was released from the grassland ecosystem to the atmosphere. Dominant components in the C budget appeared to be aboveground net primary production of plants (1.94–2.80 Mg C ha?1) and heterotrophic respiration (2.27–3.11 Mg C ha?1). The measurement of belowground net primary production (BNPP) of plants in the M. sinensis grassland was extremely variable, thus only an approximate value could be calculated. Mean C budget calculated with the approximated BNPP value was 1.47 and ?0.23 Mg C ha?1 for 2008 and 2009, respectively. Given belowground biomass (9.46–9.86 Mg C ha?1) was 3.1–6.5 times higher than that of aboveground biomass may provide additional evidence suggesting this grassland represents a C sink. Average CH4 emissions across years of ?1.34 kg C ha?1 would indicate this grassland acts as an atmospheric CH4 sink. Furthermore, average N2O emissions across years were 0.22 kg N ha?1. While the site may contribute N2O to the atmosphere, this value is lower compared with other grassland types. Global warming potential calculated with the approximated BNPP value was ?5.40 and 0.95 Mg CO2 Eq ha?1 for 2008 and 2009, respectively, and indicates this grassland could contribute to mitigation of global warming.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号