Cellular replicative senescence is a permanent growth arrest state that can be triggered by telomere shortening. The cyclin-dependent kinase (Cdk) inhibitor p21CIP1/WAF1 (p21), encoded by the CDKN1A gene, is a critical cell cycle regulator whose expression increases as cells approach senescence. Although the pathways responsible for its up-regulation are not well understood, compelling evidence indicates that the upstream triggering event is telomere dysfunction. Studies of replicative senescence have been complicated by the asynchrony of its onset, which is caused by the continuous and stochastic variability in individual cell lifespans. In fact, the actual entry into senescence has never been observed in a single unperturbed cell. We report here a new in vitro human model system that allows entry into senescence to be monitored in real-time in individual viable cells. We used homologous recombination to generate non-immortalized fibroblast cells with the enhanced yellow fluorescence protein (EYFP) gene knocked into one CDKN1A gene copy, allowing promoter activity to be visualized as fluorescence intensity. Gamma irradiation, DNA-damaging drugs, expression of p14ARF or oncogenic Ras, and replicative exhaustion all resulted in elevated EYFP expression, demonstrating its proper control by physiological signalling circuits. Analysis by time-lapse microscopy of cultures approaching replicative senescence revealed that p21 levels rise abruptly in individual aging cells and remain elevated for extended periods of time. 相似文献
Growth of human breast adenocarcinoma MCF-7 cells as a tumor on nude mice is dependent on estrogen. It has been shown that estrogen withdrawal (EW) induces a partial regression of the tumor via an inhibition of cell proliferation and an induction of apoptosis. We investigated in this in vivo model the underlying molecular mechanisms of the hormone-dependent regulation of cell cycle machinery and apoptosis. We found that, 2 days after EW, the tumor protein levels of p21 rose, whereas those of Rb proteins decreased in parallel with the decrease in the proportion of tumor cells in S phase and the increase of the tumor apoptotic index. Between 3 and 7 days after EW, apoptosis was inhibited and tumor proliferation returned to the control value. There was a concomitant decline in p21 and an elevation of Rb tumor protein content. Slight variations of cyclin D protein level were observed in MCF-7 tumors over the time course following EW treatment. Bcl-2 overexpression not only inhibited apoptosis induced by EW but also modulated hormone-dependent cell cycle regulation. First, the analysis of phosphorylation status of Rb protein and the measurement of the proportion of tumor cells in S phase indicated that Bcl-2 overexpression results in a decrease of DNA synthesis induced by estradiol. Furthermore, after EW, Bcl-2-induced inhibition of hormone-dependent apoptosis was associated with an inhibition of Rb protein downregulation, a sustained level of p21 protein, and a prolonged inhibition of cell cycle progression. These results suggest that, in human hormone-dependent breast cancers, cross-talk exists between the signaling pathways which lead to regulation of cell cycle progression and apoptosis. 相似文献
Summary We have investigated the effects of acetone and methanol extracts of a medicinal plant, Terminalia arjuna, on the growth of human normal fibroblasts (WI-38), osteosarcoma (U2OS), and glioblastoma (U251) cells in vitro. We found
that both extracts at 30 μg and 60 μg/ml concentrations inhibit the growth of transformed cells; the growth of normal cells
was least affected. Although the transformed cells appeared to have fragmented nucleus by Hoechst staining, no deoxyribonucleic
acid laddering effect was observed. In response to the extract treatment, the tumor suppressor protein, p53, was induced in
U2OS but not in U251 and WI-38 cells. A cyclin-dependent kinase inhibitor, p21WAF1, was induced in transformed cells only. The study suggests that the bark extract of medicinal plant, T. arjuna, has components that can induce growth arrest of transformed cells by p53-dependent and-independent pathways. 相似文献
A mouse monoclonal antibody 12B1 was raised against Golgi fractions from Sf21 insect cells and selected as Golgi-specific by immunostaining of the cells. The antigen was purified from the cells by immunoaffinity chromatography with the monoclonal antibody, and its N-terminal and internal amino acid sequences were determined. Based on the partial amino acid sequences, cDNA encoding the antigen protein was cloned and sequenced. The amino acid sequence deduced from the cDNA nucleotide sequence showed a homology to those of CALNUC family proteins, CALNUC (or nucleobindin, a calcium-binding Golgi protein with DNA-binding activity) and protein NEFA (a cell surface protein with DNA-binding, EF-hand, and acidic domains). The insect protein had two EF-hand loops at the same sites as the mammalian CALNUC family proteins, but had no leucine zipper which the mammalian homologues commonly have. An electron microscopic immunoperoxidase study demonstrated that the insect protein was localized in the cis-Golgi cisternae and cis-Golgi networks. Since this localization is identical to that of mammalian CALNUC, the insect protein was considered to be a homologue of CALNUC rather than that of NEFA. Assays involving proteinase K digestion, sodium carbonate extraction and Triton X-114 extraction revealed that the insect CALNUC-like protein was a soluble protein tightly associated with the luminal surface of Golgi membranes as reported for mammalian CALNUC. The insect protein was also shown to have calcium-binding activity as does mammalian CALNUC. These data verify that the insect protein is CALNUC. The existence of CALNUC in insect cells suggests that CALNUC is an essential calcium-binding Golgi protein in a wide range of the animal kingdom. A phylogenetic tree analysis, however, suggested that NEFA was derived from CALNUC long after the segregation of a mammalian ancestor from an insect ancestor. 相似文献
During the past several years increasing evidence indicating that the proliferation capacity of mammalian cells is highly radiosensitive, regardless of the species and the tissue of origin of the cells, has accumulated. It has also been shown that normal bone marrow cells of mice have a similar radiosensitivity to other mammalian cells so far tested. In this study, we investigated the genetic effects of ionizing radiation (2.5-15 Gy) on normal human mesenchymal stem cells and their telomerised counterpart hMSC-telo1. We evaluated overall genomic integrity, DNA damage/repair by applying a fluorescence-detected alkaline DNA unwinding assay together with Western blot analyses for phosphorylated H2AX and Q-FISH was applied for investigation of telomeric damage. Our results indicate that hMSC and TERT-immortalized hMSCs can cope with relatively high doses of gamma-rays and that overall DNA repair is similar in the two cell lines. The telomeres were extensively destroyed after irradiation in both cell types suggesting that telomere caps are especially sensitive to radiation. The TERT-immortalized hMSCs showed higher stability at telomeric regions than primary hMSCs indicating that cells with long telomeres and high telomerase activity have the advantage of re-establishing the telomeric caps. 相似文献
Many types of cancer cells constitutively express major molecular chaperones at high levels. Recent findings demonstrate that specific depletion of individual chaperones, including various members of the Hsp70 family, small heat shock proteins, or VCP/p97, leads to activation of p53 pathway and subsequently triggers cellular senescence. Here, we discuss a possibility that in cancer cells high levels of chaperones serve to keep the p53 signaling under control, thus allowing cancer cells to evade the default senescence and form tumors. 相似文献
ObjectiveTo study the expression of three genes IL-21, FBXL20 and tumour suppressor gene PTEN in laryngeal cancer; analyse the differences in their expression in laryngeal cancer and adjacent tissues; by using pEGFP-N1-IL21 and pGPU/GFP/Neo-FBXL20 expression vectors, to analyse the characteristics in their expression in laryngeal cancer cells outside the body as well as the associations among them.MethodsThe expression of the three genes in laryngeal cancer and adjacent tissues from 30 cases and in normal laryngeal tissues from 20 healthy persons was detected with the RT-PCR; laryngeal cancer cell line (HEp-2 cells) transfection was also performed with the pEGFP-N1-IL21 and pGPU/GFP/Neo-FBXL20 expression vectors we constructed, to detect the mRNA expression of the three genes. Cell proliferation, apoptosis and cell cycle were measured by the MTT assay.ResultsThe results of RT-PCR showed that the expression of IL-21 and FBXL20 was up-regulated in laryngeal cancer, while the expression of tumour suppressor gene PTEN was significantly decreased (p < 0.01). In HEp-2 cells transfected with pGPU/GFP/Neo-IL-21 and pGPU/GFP/Neo-FBXL20 expression vectors, the mRNA expression of PTEN was restored to some extent (p < 0.05); in addition, the ability of HEp-2 cells in proliferation and invasion was also reduced.ConclusionsIL-21 and FBXL20 genes are important in the occurrence and development of laryngeal cancer; the expression of PTEN gene can suppress laryngeal cancer, and there's a certain association among IL-21, FBXL20 and PTEN. 相似文献
Introduction: Smoking contributes to the death of a million people worldwide each year. Smokers experience an alteration in tumour necrosis factor-alpha (TNF-α), and the risk of expected lung cancer. The study aimed at investigating the expression levels of mir-126 and mir-124, as well as TNF-α as possible biomarkers of expected smoking-related diseases.
Methods: Twenty-five male smokers’ age and sex-matched with 25 non-smokers were recruited for the present study. Plasma expression levels of mir-126 and mir-124 were evaluated using quantitative real-time PCR. Lipid profile, TNF-α, interleukin-6 and C-reactive protein were assessed in plasma of each participant.
Results: Plasma miR-126 was statistically down-regulated in smokers relative to non-smokers; however, mir-124 did not show any significant changes between groups. Among the measured parameters, mir-126 and tumour necrosis factor alpha (TNF-α) displayed a good discrimination and sensitivity between smokers and non-smokers (AUC = 0.809 (95% CI: 0.668–0.95; p?<?0.001) and 0.742(95% CI: 0.584–0.9; p?<?0.01), respectively. Also, the combined evaluation of miR-126 and TNF-α levels showed high discrimination (AUC= 0.889 (95% CI: 0.779–1.00; p?<?0.0001), sensitivity = 85%, and specificity = 80% in the diagnosis of smokers with non-smokers.
Conclusions: MiR-126 and TNF-α are potential biomarkers of smoking-related diseases and are important in assessing the expected tobacco-related harm. 相似文献