首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1814篇
  免费   152篇
  国内免费   121篇
  2023年   33篇
  2022年   59篇
  2021年   64篇
  2020年   61篇
  2019年   102篇
  2018年   78篇
  2017年   46篇
  2016年   60篇
  2015年   53篇
  2014年   104篇
  2013年   131篇
  2012年   96篇
  2011年   101篇
  2010年   71篇
  2009年   94篇
  2008年   83篇
  2007年   88篇
  2006年   78篇
  2005年   77篇
  2004年   75篇
  2003年   69篇
  2002年   69篇
  2001年   28篇
  2000年   52篇
  1999年   38篇
  1998年   27篇
  1997年   23篇
  1996年   21篇
  1995年   18篇
  1994年   12篇
  1993年   6篇
  1992年   9篇
  1991年   5篇
  1990年   8篇
  1989年   9篇
  1988年   5篇
  1987年   5篇
  1985年   12篇
  1984年   9篇
  1983年   4篇
  1982年   11篇
  1981年   11篇
  1980年   8篇
  1979年   10篇
  1978年   10篇
  1977年   12篇
  1976年   8篇
  1975年   14篇
  1974年   4篇
  1973年   5篇
排序方式: 共有2087条查询结果,搜索用时 15 毫秒
101.
In the accompanying paper, we found, using molecular dynamics calculations, four domains of the ras-specific SOS guanine nucleotide exchange protein (residues 589-601, 654-675, 746-761, and 980-989) that differ markedly in conformation when SOS is complexed with either oncogenic (Val 12-) ras-p21 or wild-type ras-p21. Three of these domains contain three crystallographically undefined loops that we modeled in these calculations, and one is a newly identified non-loop domain containing SOS residues 980-989. We have now synthesized peptides corresponding to these four domains and find that all of them block Val 12-ras-p21-induced oocyte maturation. All of them also block insulin-induced oocyte maturation, but two of these peptides, corresponding to SOS residues 589-601 and 980-989, block oncogenic ras to a significantly greater extent. These results suggest that SOS contains domains, including the three loop domains, that are important for ras signaling and that several of these domains can activate different pathways specific to oncogenic or wild-type ras-p21.  相似文献   
102.
Oncogenic ras-p21 directly activates jun-N-terminal kinase (JNK) and its substrate, jun as a unique step on its mitogenic signal transduction pathway. This activation is blocked by the specific JNK-jun inhibitor, glutathione-S-transferase-pi (GST-pi). Four domains of GST-pi have been implicated in this regulatory function: 34-50, 99-121, 165-182, and 194-201. The 34-50 domain is unique in that it does not affect GST-pi binding to JNK-jun but blocks jun phosphorylation by JNK. We now find that it completely blocks oncogenic (Val 12-) ras-p21-induced oocyte maturation but has no effect on insulin-induced oocyte maturation. Because the latter process requires activation of wild-type ras-p21, this peptide appears to be specific for inhibiting only the oncogenic form of ras-p21, suggesting its use in treating ras-induced tumors.  相似文献   
103.
We provide here evidence that c-Jun N-terminal protein kinase 1 (JNK1) activity is differentially up-regulated during apoptosis of SK-HEP-1 cells after treatment with ginsenoside Rh2 (G-Rh2). The G-Rh2-mediated JNK1 activation that occurred for the first 10-30min was associated with SEK1 activity, but thereafter, the sustained activation was associated not with SEK1 activity, but with proteolytic cleavage of JNK1-associated p21(WAF1/CIP1). Supporting this is that the expression of the dominant negative SEK1 mutant effectively blocked the early JNK1 activation phase but did not alter the sustained activation phase or apoptosis. Furthermore, expression of p21D112N, an uncleavable mutant of p21(WAF1/CIP1), suppressed the later JNK1 activation. Moreover, the stable overexpression of ectopic JNK1 suppressed apoptosis while expression of the dominant negative JNK1 mutant promoted it. We propose that the early SEK1-associated JNK1 activation phase acts to prolong cell survival in response to apoptosis-inducing agents, thereby serving as an intervening checkpoint prior to the commitment to apoptosis.  相似文献   
104.
To identify novel factors required for ER to Golgi transport in yeast we performed a screen for genes that, when mutated, confer a dependence on a dominant mutant form of the ER to Golgi vesicle docking factor Sly1p, termed Sly1-20p. DSL1 , a novel gene isolated in the screen, encodes an essential protein with a predicted molecular mass of 88 kDa. DSL1 is required for transport between the ER and the Golgi because strains bearing mutant alleles of this gene accumulate the pre-Golgi form of transported proteins at the restrictive temperature. Two strains bearing temperature-sensitive alleles of DSL1 display distinct phenotypes as observed by electron microscopy at the restrictive temperature; although both strains accumulate ER membrane, one also accumulates vesicles. Interestingly, the inviability of strains bearing several mutant alleles of DSL1 can be suppressed by expression of either Erv14p (a protein required for the movement of a specific protein from the ER to the Golgi), Sec21p (the γ-subunit of the COPI coat protein complex coatomer), or Sly1-20p. Because the strongest suppressor is SEC21 , we proposed that Dsl1p functions primarily in retrograde Golgi to ER traffic, although it is possible that Dsl1p functions in anterograde traffic as well, perhaps at the docking stage, as suggested by the suppression by SLY1-20 .  相似文献   
105.
106.
We have characterized the cell cycle deficit of a novel TrkA receptor mutant (TrkAS3) that fails to support nerve growth factor (NGF)-dependent cell cycle arrest and neurite outgrowth. TrkAS3 receptors fail to support an NGF-dependent increase in the expression of cyclin D1 and the cell cycle inhibitor, p21(Waf1/Cip1), two important regulators of G(1) /S transition, and do not down-regulate expression of the G(2) /M phase marker, cdc2/cdk1, or the S phase marker, proliferating cell nuclear antigen. Moreover, NGF-activated TrkAS3 receptors do not down-regulate cyclin-dependent kinase 4 phosphorylation of the retinoblastoma protein, essential for G(1) arrest, in comparison to NGF-activated wild-type TrkA. Collectively these data indicate that TrkAS3 receptors fail to support NGF-dependent G(1) arrest. Interestingly, ectopic expression of regulators of G(1) /S arrest, such as cyclin D1 or inhibitors of cell cycle (p21(Waf1/Cip1), p16(INK4A) ), or the fibroblast growth factor (FGF) receptor substrate-2 (FRS2) in cells expressing TrkAS3 reconstitutes NGF-dependent neurite outgrowth. Collectively, these data suggest a model in which NGF-stimulated TrkA-dependent activation of FRS2 supports neurite outgrowth through a mechanism that likely involves the induction of p21(Waf1/Cip1) expression and the arrest of cells at G(1) /S.  相似文献   
107.
p53 is an important player in the cellular response to genotoxic stress whose functions are regulated by phosphorylation of a number of serine and threonine residues. Phosphorylation of p53 influences its DNA-binding and gene regulation activities. This study examines p53 phosphorylation in HCT-116 (MMR-deficient) and HCT-116+ch3 (MMR-proficient) human colon cancer cells treated with a S(N)2 DNA-alkylating agent, methylmethane sulfonate (MMS). MMS induces phosphorylation of p53 on Ser15 and Ser392 in a dose- and time-dependent manner. MMS-induced p53 phosphorylation is independent of DNA mismatch repair (MMR) activity. Nuclear extracts from MMS-treated HCT-116 cells had higher p21WAF1/Cip1 (p21) promoter DNA-binding activity in vitro opposed to untreated cells. After MMS treatment, the activation of the cloned p21 promoter in a transient transfection assay and endogenous p21 mRNA levels in HCT-116(p53+/+) versus HCT-116(p53-/-) cells increased, which correlates with an increased levels of phospho-p53(Ser15) and phospho-p53(Ser392). These results suggest that SN2 DNA-alkylating agent-induced phosphorylation of p53 on Ser15 and Ser392 increases its DNA-binding properties to cause an increased expression of p21 that may play a role in cell cycle arrest and/or apoptosis of HCT-116 cells.  相似文献   
108.
Apoptosis and apoptosis related proteins in chronic viral liver disease   总被引:10,自引:0,他引:10  
Background: Apoptosis may be an important mechanism of hepatocyte death in chronic viral liver disease. Methods: We studied apoptosis in liver biopsies from 30 patients with chronic viral hepatitis and 8 patients with viral cirrhosis by the TUNEL method. 12 cases of non-alcoholic steatohepatitis and 12 cases of primary biliary cirrhosis were used as non-viral disease controls. Immunohistochemical expression of p53, p21/waf1, bcl-2 and mdm-2 proteins was also studied in the same patients. Results: A statistically significant increase of apoptotic liver cells was found in severe chronic viral hepatitis (5.3 ± 0.3%), cirrhosis (3.4 ± 0.5%) and PBC (4.4 ± 0.4%) cases compared to patients with non-alcoholic steatohepatitis (0.8 ± 0.3%). The expression of p53 protein was increased in the cases of viral cirrhosis and in chronic severe viral hepatitis whereas in the cases of chronic mild hepatitis, PBC and non-alcoholic steatohepatitis we found no expression of p53. P21/waf1 expression was increased in severe chronic hepatitis, cirrhosis and PBC cases compared to mild hepatitis and non-alcoholic steatohepatitis cases. However no induction of mdm-2 was observed in the subgroups of chronic liver disease. Bcl-2 was expressed only in epithelium of bile ducts and mononuclear cells of the portal tracts and liver lobules. A weaker Bcl-2 expression was noted in the epithelium of bile ducts of 7/12 PBC cases. Conclusion: Our results provide evidence of increased apoptosis in severe chronic viral liver disease, suggesting that apoptotic cell death might be involved in the pathogenesis of hepatocellular damage of viral hepatitis and cirrhosis. Furthermore we analysed part of the apoptotic pathways implicated in the above process and found an increased expression of p21/waf1, probably p53 mediated, without overexpression of the apoptosis inhibiting bcl-2 and mdm-2 proteins. By contrast p21/waf1 overexpression in PBC seems to be propagated by a p53 independent mechanism.  相似文献   
109.
We have previously found that a ras switch 1 domain peptide (PNC-7, residues 35–47) selectively blocks oocyte maturation induced by oncogenic (Val 12–containing) ras-p21 protein and also blocks c-raf–induced oocyte maturation. We now find that oncogenic ras-p21 does not inhibit oocyte maturation of a constitutively activated raf protein (raf BXB) that is lacking most of the first 301 amino terminal amino acids, including the major ras binding domain and accessory ras-binding regions. We also find that a dominant negative raf that completely blocks c-raf–induced maturation likewise does not block raf-BXB–induced maturation. We conclude that PNC-7 blocks ras by binding to the amino-terminal domain of raf and that raf BXB must initiate signal transduction in the cytosol.  相似文献   
110.
An extra copy of human chromosome 21 (Chr 21) causes Down syndrome (DS), which is characterized by mental retardation and congenital heart disease (CHD). Chimeric mice containing Chr 21 also exhibit phenotypic traits of DS including CHD. In this study, to identify genes contributing to DS phenotypes, we compared the overall protein expression patterns in hearts of Chr 21 chimeras and wild type mice by two-dimensional electrophoresis. The endogenous mouse atrial specific isoform of myosin light chain-2 (mlc-2a) protein was remarkably downregulated in the hearts of chimeric mice. We also confirmed that the human MLC-2A protein level was significantly lower in a human DS neonate heart, as compared to that of a normal control. Since mouse mlc-2a is involved in heart morphogenesis, our data suggest that the downregulation of this gene plays a crucial role in the CHD observed in DS. The dosage imbalance of Chr 21 has a trans-acting effect which lowers the expression of other genes encoded elsewhere in the genome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号