首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32372篇
  免费   1957篇
  国内免费   4785篇
  2024年   59篇
  2023年   505篇
  2022年   709篇
  2021年   988篇
  2020年   876篇
  2019年   1139篇
  2018年   907篇
  2017年   863篇
  2016年   910篇
  2015年   1132篇
  2014年   1529篇
  2013年   2085篇
  2012年   1496篇
  2011年   1527篇
  2010年   1329篇
  2009年   1625篇
  2008年   1786篇
  2007年   1933篇
  2006年   1972篇
  2005年   1827篇
  2004年   1693篇
  2003年   1588篇
  2002年   1462篇
  2001年   1196篇
  2000年   994篇
  1999年   924篇
  1998年   810篇
  1997年   701篇
  1996年   681篇
  1995年   655篇
  1994年   616篇
  1993年   435篇
  1992年   383篇
  1991年   319篇
  1990年   268篇
  1989年   187篇
  1988年   207篇
  1987年   183篇
  1986年   134篇
  1985年   119篇
  1984年   104篇
  1983年   49篇
  1982年   64篇
  1981年   32篇
  1980年   36篇
  1979年   23篇
  1978年   17篇
  1977年   9篇
  1976年   16篇
  1950年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
941.
贝莱斯芽胞杆菌(Bacillus velezensis)HG18是1株低温生防菌株,能够分泌抗菌物质。为挖掘和利用其抗菌功能基因,服务农业生产,采用二、三代相结合测序技术,对其进行全基因组测序,获得菌株完整基因组序列。基因组全长4 461 844 bp,包含一个染色体和一个质粒,GC含量44.06%,编码4 643个基因,编码基因总长度3 893 994 bp,占基因组87.27%。发现6个几丁质降解相关基因,2个葡聚糖酶基因和1个壳聚糖酶基因,2个脂肽类抗菌物质芬芥素与表面活性素合成基因簇,2个细菌素subtilin和bacillolysin合成基因。研究为提高抗菌物质产量的菌株定向遗传改造以及植物抗病育种提供基因资源。  相似文献   
942.
943.
Barley (Hordeum vulgare L.) is a major cereal grain and is known as a halophyte (a halophyte is a salt-tolerant plant that grows in soil or waters of high salinity). We therefore conducted a pot experiment to explore plant growth and biomass, photosynthetic pigments, gas exchange attributes, stomatal properties, oxidative stress and antioxidant response and their associated gene expression and absorption of ions in H. Vulgare. The soil used for this analysis was artificially spiked at different salinity concentrations (0, 50, 100 and 150 mM) and different levels of ascorbic acid (AsA) were supplied to plants (0, 30 and 60 mM) shortly after germination of the seed. The results of the present study showed that plant growth and biomass, photosynthetic pigments, gas exchange parameters, stomatal properties and ion uptake were significantly (p < 0.05) reduced by salinity stress, whereas oxidative stress was induced in plants by generating the concentration of reactive oxygen species (ROS) in plant cells/tissues compared to plants grown in the control treatment. Initially, the activity of antioxidant enzymes and relative gene expression increased to a saline level of 100 mM, and then decreased significantly (P < 0.05) by increasing the saline level (150 mM) in the soil compared to plants grown at 0 mM of salinity. We also elucidated that negative impact of salt stress in H. vulgare plants can overcome by the exogenous application of AsA, which not only increased morpho-physiological traits but decreased oxidative stress in the plants by increasing activities of enzymatic antioxidants. We have also explained the negative effect of salt stress on H. vulgare can decrease by exogenous application of AsA, which not only improved morpho-physiological characteristics, ions accumulation in the roots and shoots of the plants, but decreased oxidative stress in plants by increasing antioxidant compounds (enzymatic and non-enzymatic). Taken together, recognizing AsA's role in nutrient uptake introduces new possibilities for agricultural use of this compound and provides a valuable basis for improving plant tolerance and adaptability to potential salinity stress adjustment.  相似文献   
944.
Plant immune signalling activated by the perception of pathogen-associated molecular patterns (PAMPs) or effector proteins is mediated by pattern-recognition receptors (PRRs) and nucleotide-binding and leucine-rich repeat domain-containing receptors (NLRs), which often share cellular components and downstream responses. Many PRRs are leucine-rich repeat receptor-like kinases (LRR-RLKs), which mostly perceive proteinaceous PAMPs. The suppressor of the G2 allele of skp1 (SGT1) is a core immune regulator required for the activation of NLR-mediated immunity. In this work, we examined the requirement of SGT1 for immune responses mediated by several LRR-RLKs in both Nicotiana benthamiana and Arabidopsis. Using complementary genetic approaches, we found that SGT1 is not limiting for early PRR-dependent responses or antibacterial immunity. We therefore conclude that SGT1 does not play a significant role in bacterial PAMP-triggered immunity.  相似文献   
945.
BACKGROUNDTubulins, building blocks of microtubules, are modified substrates of diverse post-translational modifications including phosphorylation, polyglycylation and polyglutamylation. Polyglutamylation of microtubules, catalyzed by enzymes from the tubulin tyrosine ligase-like (TTLL) family, can regulate interactions with molecular motors and other proteins. Due to the diversity and functional importance of microtubule modifications, strict control of the TTLL enzymes has been suggested.AIMTo characterize the interaction between never in mitosis gene A-related kinase 5 (NEK5) and TTLL4 proteins and the effects of TTLL4 phosphorylation.METHODSThe interaction between NEK5 and TTLL4 was identified by yeast two-hybrid screening using the C-terminus of NEK5 (a.a. 260–708) as bait and confirmed by immunoprecipitation. The phosphorylation sites of TTLL4 were identified by mass spectrometry and point mutations were introduced.RESULTSHere, we show that NEK5 interacts with TTLL4 and regulates its polyglutamylation activity. We further show that NEK5 can also interact with TTLL5 and TTLL7. The silencing of NEK5 increases the levels of polyglutamylation of proteins by increasing the activity of TTLL4. The same effects were observed after the expression of the catalytically inactive form of NEK5. This regulation of TTLL4 activity involves its phosphorylation at Y815 and S1136 amino acid residues.CONCLUSIONOur results demonstrate, for the first time, the regulation of TTLL activity through phosphorylation, pointing to NEK5 as a potential effector kinase. We also suggest a general control of tubulin polyglutamylation through NEK family members in human cells.  相似文献   
946.
96序列相似的家庭成员A和B(family with sequence similarity 96 member A and B,FAM96A和FAM96B)是属于MIP18(MMS19-interacting protein of 18 kD)家族的2个高度保守的同源蛋白,MIP18是与有丝分裂纺锤体相关的MMDX(MMS19-MIP18-XPD)复合体的亚基。研究表明,FAM96A和FAM96B在人胃肠道间质瘤、结肠癌、肝癌、胃癌和乳腺癌等多种肿瘤组织中的表达显著降低,提示其可能是作为潜在的抑癌基因参与肿瘤的发生发展,但目前关于FAM96A和FAM96B在肿瘤发生发展过程中的作用机理并不十分清楚。此外,研究发现FAM96A和FAM96B可通过与其他不同的蛋白质相互作用在体内发挥多种不同的功能。因此,就目前对于FAM96A和FAM96B结构和功能的研究所取得的进展进行了回顾与总结,并对其在肿瘤发生发展中的分子机制和相互作用蛋白鉴定的研究前景进行了展望,以期为临床上将FAM96A和FAM96B作为新的肿瘤诊断标志物和治疗靶点奠定基础,并为揭示二者在体内更多的新功能提供依据。  相似文献   
947.
肌肉生长抑制素基因(myostatin,MSTN)是骨骼肌发育的负调节因子,在不同物种中具有高度保守性。自然突变或通过基因编辑技术对该基因进行操作,均可以获得肌肉异常发达的动物个体。研究表明,MSTN基因突变可以通过多种调控途径影响肌肉发育过程。因此,从成肌细胞增殖、分化、蛋白质合成分解代谢、组蛋白修饰以及巨噬细胞极化等5个方面对MSTN突变促进肌肉发育的机理进行综述,以期为农业动物育种新材料生产及重大恶病质的治疗提供借鉴。  相似文献   
948.
A potential concern about the use of antibiotics in animal husbundary is that, as antibiotic resistant bacteria move from the farm into the human diet, they may pass antibiotic resistance genes to bacteria that normally reside in a the human intestinal tract and from there to bacteria that cause human disease (reservoir hypothesis). In this article various approaches to evaluating the risk of agricultural use of antibiotics are assessed critically. In addition, the potential benefits of applying new technology and using new insights from the field of microbial ecology are explained.  相似文献   
949.
In this study, attempts have been made to identify and characterize water buffalo (Bubalus bubalis) mammary derived growth inhibitor (MDGI) gene, isolated from a mammary gland cDNA library of lactating buffalo. The complete MDGI cDNA was of 698 nucleotides, consisting 61 nucleotides in 5′ UTR, coding region of 402 nucleotides, and 235 nucleotides representing the 3′ UTR. Comparison of nucleotide and deduced amino acid sequence data with that of MDGI//fatty acid binding protein (FABP) of other species shows three buffalo specific nucleotide changes while seven nucleotide changes were common to cattle and buffalo. Buffalo and cattle MDGI had 100% amino acid sequence similarity, which also shared three amino acid changes: 34 (Ala-Gly), 109 (Leu-Met), and 132 (Glu-Gln) as compared to other species. Comparison with FABPs reported from other cattle tissues revealed highest amino acid sequence similarity with FABP-heart (100%) and least with FABP-liver (20.5%). Phylogenetic analysis revealed cattle MDGI to be closest to buffalo, while mouse MDGI was distantly placed, whereas different tissue derived FABPs of cattle showed FABP-heart closest and FABP-epidermis most distantly placed from buffalo MDGI. This report also differs from the earlier findings that MDGI is intermediate of FABP-heart and adipose.  相似文献   
950.
The ability to add or delete specific genes in swine will likely provide considerable benefits not just to agriculture but also to medicine, where pigs have potential as models for human disease and as organ donors. Here we have transferred nuclei from a genetically modified fibroblast cell line to porcine oocytes, matured in vitro under defined culture conditions, to create piglets expressing enhanced green fluorescent protein. The nuclear transfer-derived piglets were of normal size, although some mild symptoms of “large offspring syndrome” were evident. These experiments represent a next step towards creating swine with more useful genetic modifications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号