首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   17篇
  国内免费   84篇
  268篇
  2023年   6篇
  2022年   4篇
  2021年   10篇
  2020年   6篇
  2019年   16篇
  2018年   15篇
  2017年   10篇
  2016年   12篇
  2015年   14篇
  2014年   7篇
  2013年   12篇
  2012年   7篇
  2011年   21篇
  2010年   5篇
  2009年   9篇
  2008年   15篇
  2007年   7篇
  2006年   7篇
  2005年   11篇
  2004年   5篇
  2003年   3篇
  2002年   10篇
  2001年   5篇
  2000年   5篇
  1999年   7篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   5篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   4篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有268条查询结果,搜索用时 15 毫秒
121.
Mining activities create wastelands that require reclamation. The relief of abandoned opencast oil shale mining area is rugged, and the mining spoil is extremely stony and alkaline (pH 8), with low N and organic content. Planting of fast-growing deciduous tree species such as silver birch (Betula pendula) on post-mining area is the best means to accelerate the development of a new forest ecosystem in such harsh conditions. A chronosequence of silver birch stands (1, 2, 3, 5, 29, 40 years old) was investigated to reveal changes in bulk soil (S) and rhizosphere (R) properties, in rhizosphere effect on bacterial activity and diversity, and in fine-root morphological adaptations in relation to stand development. The rhizosphere effect on bacterial activity was measured as a rhizosphere/soil (R/S) ratio and on species diversity as a similarity (%) between rhizosphere and bulk soil bacterial communities. Bacterial species diversity was determined by denaturing gradient gel electrophoresis (DGGE) technique and was expressed as Shannon diversity index. Biolog EcoPlates were used to determine the summed activity of cultivable bacteria in rhizosphere and bulk soil. Short-root morphological parameters were measured using WinRHIZO™ Pro.Soil pH and available P concentration decreased logarithmically, and N% and organic matter concentration increased linearly with increasing stand age. During the first 30 years of stand development SIR increased an order, from 0.18 to 1.90 mg C g−1. Bulk soil bacterial diversity increased logarithmically with stand age. The bacterial diversity was higher in rhizosphere than in bulk soil. Rhizosphere effect on bacterial activity was low a year after planting, increased more than two times in the next 2 years, and decreased thereafter rapidly with stand age. Rhizosphere effect, indicating plant support to rhizosphere microbial communities, was highest when soil conditions were still poor, but trees had already overcome the transplant shock. All short-root morphological parameters showed certain trends with age. Specific short-root length varied between 56 and 313 m g−1 and decreased logarithmically with stand age and soil improvement. The fastest changes in short-root morphology, rhizosphere effect, and soil pH occurred during the early development of silver birch stands - in the first 5 years; P nutrition and N use efficiency improved simultaneously. Rhizosphere effect and short-root morphological adaptation have an important role in soil and stand development on oil shale post-mining area, and silver birch is a promising tree species for reclamation of alkaline mining spoil.  相似文献   
122.
Assessments of ecosystem restoration have traditionally focused on soil and vegetation, often with little consideration of fauna. It is critical to include fauna in such assessments, not just because of their intrinsic biodiversity value but also because of the many ecological roles that animals play in restoration processes. However, a widely accepted framework for specifying faunal standards for restoration is lacking. Here we present such a framework, incorporating: (1) the identification of appropriate reference conditions; (2) the taxa to be targeted for assessment; (3) the attributes of these taxa to be measured; (4) acceptable similarity with reference conditions; and (5) robust sampling methodologies for reliable assessment. We illustrate this framework using the restoration program at Ranger Uranium Mine in the Australian seasonal tropics, which aims to establish an environment similar to the surrounding World Heritage-listed Kakadu National Park, corresponding to “full recovery” according to Society for Ecosystem Restoration's standards. Our case study has especially high restoration standards, but our framework has wide applicability to the specification of faunal standards for ecosystem restoration.  相似文献   
123.
段后浪  于秀波 《生态学报》2023,43(15):6354-6363
中国滨海湿地是东亚-澳大利西亚迁徙路线上候鸟重要的停歇地、繁殖地和越冬地,土地利用变化所引发的滨海湿地退化导致水鸟栖息地类别和面积发生了很大转变,影响迁徙水鸟种群数量的稳定性。然而,土地利用变化在哪些区域和多大程度上影响了迁徙水鸟的栖息地分布尚不清晰。以土地围垦典型区域黄渤海滨海湿地为研究区,以受胁濒危水鸟物种勺嘴鹬、大滨鹬、大杓鹬、小青脚鹬、黑脸琵鹭、黄嘴白鹭、遗鸥、黑嘴鸥为研究对象,结合物种分布模型MaxEnt和GIS空间分析,模拟2000、2015、2020年水鸟栖息地时空分布,探索过去20年栖息地分布的时空变化,分析水鸟种群变化趋势,识别水鸟栖息地保护优先区域,提出水鸟栖息地保护管理建议。结果显示:2000—2020年,8个水鸟物种栖息地主要分布在渤海湾、莱州湾、江苏盐城沿岸、如东-东台沿岸区域。所有物种的栖息地面积均呈不同程度的下降趋势,其中7个物种栖息地下降比例超过50%,下降的区域主要分布在渤海湾、江苏盐城沿岸、东台条子泥、小洋口沿岸,滨海湿地丧失是导致水鸟栖息地面积下降的直接因素。7个物种种群数量呈下降趋势。研究所确定的水鸟保护优先区面积达240.32 km2...  相似文献   
124.
Climate change will drive significant changes in vegetation cover and also impact efforts to restore ecosystems that have been disturbed by human activities. Bitumen mining in the Alberta oil sands region of western Canada requires reclamation to “equivalent land capability,” implying establishment of vegetation similar to undisturbed boreal ecosystems. However, there is consensus that this region will be exposed to relatively severe climate warming, causing increased occurrence of drought and wildfire, which threaten the persistence of both natural and reclaimed ecosystems. We used a landscape model, LANDIS‐II, to simulate plant responses to climate change and disturbances, forecasting changes to boreal forests within the oil sands region. Under the most severe climate forcing scenarios (representative concentration pathway [RCP] 8.5) the model projected substantial decreases in forest biomass, with the future forest being dominated by drought‐ and fire‐tolerant species characteristic of parkland or prairie ecosystems. In contrast, less extreme climate forcing scenarios (RCPs 2.6 and 4.5) had relatively minor effects on forest composition and biomass with boreal conifers continuing to dominate the landscape. If the climate continues to change along a trajectory similar to those simulated by climate models for the RCP 8.5 forcing scenario, current reclamation goals to reestablish spruce‐dominated boreal forest will likely be difficult to achieve. Results from scenario modeling studies such as ours, and continued monitoring of change in the boreal forest, will help inform reclamation practices, which could include establishment of species better adapted to warmer and drier conditions.  相似文献   
125.
Soil phosphorus (P) is a major driver of forest development and a critically limited nutrient in tropical soils, especially when topsoil is removed by mining. This nutrient can be present in soils in the form of different fractions, which have direct consequences for P availability to plants and, consequently, for restoration success. Therefore, understanding how the stocks of different soil P fractions change over the restoration process can be essential for guiding restoration interventions, monitoring, and adaptive management. Here, we investigated the recovery of soil P fractions by forest restoration interventions on bauxite mine sites in the Brazilian Atlantic Forest. We assessed the concentration of different fractions of soil organic and inorganic P at (1) a bauxite mine prepared for restoration; (2) two former bauxite mines undergoing forest restoration for 6 and 24 years; and (3) an old‐growth forest remnant. Overall, restored areas recovered levels of labile organic P (Po‐NaHCO3) at 5–40 cm and of moderately labile organic P (Po‐NaOH) at different depths, exhibiting concentrations similar to those found in a conserved forest. The use of P‐rich fertilizers and forest topsoil may have greatly contributed to this outcome. Some other fractions, however, recovered only after 24 years of restoration. Other inorganic P fractions did not differ among mined, restored, and conserved sites: nonlabile Pi (residual P and P‐HCl), labile Pi (Pi‐NaHCO3), and moderately labile Pi (Pi‐NaOH). Forest restoration was able to promote efficient recovery of important soil P fractions, highlighting the value of restoration efforts to mitigate soil degradation by mining.  相似文献   
126.
In search of low-cost eco-tech for the reclamation of municipal domestic wastewater, tomato plants (Lycopersicum esculentum) were cultivated on the floating bed of pulp-free coconut fiber over four different concentrations of wastewater (25%, 50%, 75% and 100%) and groundwater as control, in 10 L plastic bucket for two months. The study revealed that PO4-P was removed by 58.14-74.83% with maximum removal at 50% wastewater. More than 75% removal of NO3-N was observed in all treatments. Both COD and BOD were reclaimed highest at 100% wastewater by 61.38% and 72.03%, respectively. Ammonium-N concentration was subsided below the toxic level in all the treatments. The population of coliform bacteria (Escherichia coli) was reduced to 91.10-92.18% with maximum efficiency at 100% wastewater. Growth performance was observed relatively better at 100% wastewater. Crop production as the value addition of this technology was also recorded maximum at 100% wastewater. The bioaccumulation of Cd and Ni in tomato crop was far below the threshold level, but the bioaccumulation of Pb and Cr was above the safe level by 80 times and 660 times, respectively. The aquaponically reclaimed water can be reused in agriculture, aquaculture and industries.  相似文献   
127.
开垦对海北高寒草甸土壤有机碳的影响   总被引:13,自引:0,他引:13  
在中国科学院海北高寒草甸生态系统定位站地区,选择高寒草甸开垦后形成的农田(种植春油菜)作为研究对象,开垦年限分别为0、10、20和30年,利用土壤有机碳密度分组法,对0~10 cm、10~20 cm、20~30 cm、30~40 cm土层土壤有机碳(SOC)及不同组分(轻组有机碳LFOC,重组有机碳HFOC)含量及随开垦年限变化关系进行了研究。结果表明,高寒草甸开垦后土壤有机碳及其组分的变化主要发生在0~10 cm土层,LFOC下降最快,其次为HFOC和SOC,至30年时分别下降了48.63%、43.97%、37.64%。而0~40 cm土体内,SOC、LFOC和HFOC亦呈下降趋势,开垦30年,它们的下降速率分别为785.77、16.79和460.29 kg C.hm-2.yr-1。开垦将大大降低高寒草甸作为碳汇的功能,土壤碳库的总贮量由143 516.94 kg C.hm-2.yr-1下降至114 298.34 kg C.hm-2.yr-1,使其逆转为碳源。  相似文献   
128.
滨海湿地生态系统土壤微生物及其影响因素研究综述   总被引:3,自引:0,他引:3  
土壤微生物是滨海湿地生态系统中不可或缺的关键组分,在土壤发育、物质循环和污染物净化等诸多土壤生态过程中发挥着重要作用,对滨海湿地生态系统的维持与健康具有重大影响。系统梳理了滨海湿地土壤微生物群落结构特征和多样性,综述了土壤理化性质、植被状况、水文因素、生物入侵、全球变化、湿地开垦、石油污染等因素对滨海湿地土壤微生物的影响。在此基础上,对今后的研究重点提出了4个方面的展望:(1)加强全球变化多因子交互作用下滨海湿地土壤微生物的响应机制;(2)强化滨海湿地土壤微生物与环境因子的互作机理;(3)深化滨海湿地水动力条件对土壤微生物的影响机制;(4)开展土壤微生物与滨海湿地生态系统物质循环综合研究。研究以期为滨海湿地生态系统的保护和修复提供参考。  相似文献   
129.
This article compares reclaimed soils in the Rhineland lignite mining area, Germany (RA) and in the north Bohemian brown coal basin, Czech Republic (NBB). Because of highly significant differences of physical and chemical characteristics (RA was characterized by lower content of sand, clay, soil organic carbon, and total nitrogen) between both analyzed areas, the content of microbial biomass carbon (CMB) differs significantly (p < 0.01): RA: 241.17 ± 96.50 μg C/g dry soil; NBB: 424.42 ± 136.23 μg C/g. Extracellular microbial carbon (CEX) was also significantly higher in RA than NBB. The measured CMB values from both mining areas were verified using two empirical mathematical models. Because our former model (used for evaluation of NBB) did not fit soils with low organic carbon content (0.10–0.80%), a new model was proposed. For evaluation of RA reclaimed sites the measured, model‐predicted, and calculated values were used. The best site in RA was Dürwiss Deponie (site 18 near Eschweiler), reclaimed in 1965 and characterized by good soil physical parameters (sand 4%, silt 77%, and clay 19%). In NBB undisturbed soils were the best, together with the site of Ú?ín (site 2 near Ústí and Labem), reclaimed in 1964, where high‐quality reclamation management resulted in high biological activity. According to biological criteria, the best management practice in NBB was use of high‐quality loam overlaying montmorillonite clayey subsoil. In RA direct reclamation of high‐quality loess with low content of sand also gave good results.  相似文献   
130.
Heavy metals (Cd, Ni, Cu, Pb, and Zn) and total sulfur (TS) in both surficial sediments and adjacent floodplain topsoils of the Lean River catchment are investigated to comprehend the effects of flooding on heavy metals in soils, the evolution of the quality of sediments, and transfer of sediment metals. The results show that concentrations of metals except for Ni in soils are significantly correlated with those in sediments. At most upstream or downstream locations, sediment metal concentrations are found comparable to those in soils (sed/soil≈1). For Cu at locations close to the Dexing Copper Mine (DCM), flooding brought Cu-poor clays into the floodplain soil system and this leads to sed/soil<1, while at locations adjacent to the Yinshan Lead-zinc Mine (YLM), suspended solids containing high concentrations of iron and magnesium oxide absorb large quantities of dissolved Cd, Pb, and Zn and deposit on the floodplain during flooding (sed/soil>1). In spite of an elevated Cu production of the DCM, a significant decrease in sediment Cu concentrations is found as compared to those 10 years ago. The decrease may be due to the elevated Cu ore utilizing efficiency and the use of a new modern tailing pool. At the location closest to the Yinshan Lead-zinc Mine (YLM), Pb and Zn concentrations increased in recent sediments. In the Lean River, metal contamination in sediments cannot reach the location 60 km downstream of their sources in 2005.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号