首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   16篇
  2024年   1篇
  2023年   3篇
  2022年   1篇
  2021年   1篇
  2020年   5篇
  2019年   3篇
  2018年   4篇
  2017年   6篇
  2016年   3篇
  2015年   4篇
  2014年   4篇
  2013年   1篇
  2012年   5篇
  2011年   2篇
  2010年   2篇
  2009年   6篇
  2008年   9篇
  2007年   4篇
  2006年   6篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
  1976年   1篇
  1972年   1篇
排序方式: 共有109条查询结果,搜索用时 15 毫秒
91.
Previous studies have demonstrated genetic variation for resistance to insect herbivores and host plant quality. The effect of plant mating system, an important determinant of the distribution of genetic variation, on host plant characteristics has received almost no attention. This study used a controlled greenhouse experiment to examine the effect of self- and cross-pollination in Mimulus guttatus (Scrophulariaceae) on resistance to and host plant quality for the xylem-feeding spittlebug Philaenus spumarius (Homoptera: Cercopidae). Spittlebugs were found to have a negative effect on two important fitness components in M. guttatus, flower production and above ground biomass. One of two M. guttatus populations examined showed a significant interaction between the pollination and herbivore treatments. In this case, the detrimental effects of herbivores on biomass and flower production were much more pronounced in inbred (self) plants. The presence of spittlebug nymphs increased inbreeding depression by as much as three times. Pollination treatments also had significant effects on important components of herbivore fitness, but these effects were in opposite directions in our two host plant populations. Spittlebug nymphs maturing on self plants emerged as significantly larger adults in one of our host plant populations, indicating that inbreeding increased host plant quality. In our second host plant population, spittlebug nymphs took significantly longer to develop to adulthood on self plants, indicating that inbreeding decreased host plant quality. Taken together these results suggest that the degree of inbreeding in host plant populations can have important and perhaps complex effects on the dynamics of plant-herbivore interactions and on mating-system evolution in the host.  相似文献   
92.
Closely related species (e.g., sister taxa) often occupy very different ecological niches and can exhibit large differences in geographic distributions despite their shared evolutionary history. Budding speciation is one process that may partially explain how differences in niche and distribution characteristics may rapidly evolve. Budding speciation is the process through which new species form as initially small colonizing populations that acquire reproductive isolation. This mode of species formation predicts that, at the time of speciation, sister species should have highly asymmetrical distributions. We tested this hypothesis in North American monkeyflowers, a diverse clade with a robust phylogeny, using data on geographical ranges, climate, and plant community attributes. We found that recently diverged sister pairs have highly asymmetrical ranges and niche breadths, relative to older sister pairs. Additionally, we found that sister species occupy distinct environmental niche positions, and that 80% of sister species have completely or partially overlapping distributions (i.e., are broadly sympatric). Together, these results suggest that budding speciation has occurred frequently in Mimulus, that it has likely taken place both inside the range and on the range periphery, and that observed divergences in habitat and resource use could be associated with speciation in small populations.  相似文献   
93.
Multilocus interactions (also known as Dobzhansky-Muller incompatibilities) are thought to be the major source of hybrid inviability and sterility. Because cytoplasmic and nuclear genomes have conflicting evolutionary interests and are often highly coevolved, cytonuclear incompatibilities may be among the first to develop in incipient species. Here, we report the discovery of cytoplasm-dependent anther sterility in hybrids between closely related Mimulus species, outcrossing M. guttatus and selfing M. nasutus. A novel pollenless anther phenotype was observed in F2 hybrids with the M. guttatus cytoplasm (F2G) but not in the reciprocal F2N hybrids, F1 hybrids or parental genotypes. The pattern of phenotypic segregation in the F2G hybrids and two backcross populations fit a Mendelian single-locus recessive model, allowing us to map the underlying nuclear locus to a small region on LG7 of the Mimulus linkage map. Anther sterility was associated with a 20% reduction in flower size in backcross hybrids and we mapped a major cytoplasm-dependent corolla width QTL with its peak at the anther sterility locus. We argue that the cytonuclear anther sterility seen in hybrids reflects the presence of a cryptic cytoplasmic male sterility (CMS) and restorer system within the hermaphroditic M. guttatus population and therefore name the anther sterility locus restorer-of-male-fertility (RMF). The genetic mapping of RMF is a first step toward testing hypotheses about the molecular basis, individual fitness consequences, and ecological context of CMS and restoration in a system without stable CMS-restorer polymorphism (i.e., gynodioecy). The discovery of cryptic CMS in a hermaphroditic wildflower further suggests that selfish cytoplasmic evolution may play an important, but often undetected, role in shaping patterns of hybrid incompatibility and interspecific introgression in plants.  相似文献   
94.
Abstract The mating system of a population profoundly influences its evolution. Inbreeding alters the balance of evolutionary forces that determine the amount of genetic variation within a population. It redistributes that variation among individuals, altering heritabilities and genetic correlations. Inbreeding even changes the basic relationships between these genetic statistics and response to selection. If populations differing only in mating system are exposed to the same selection pressures, will they respond in qualitatively different ways? Here, we address this question by imposing selection on an index of two negatively correlated traits (flower size and development rate) within experimental populations that reproduce entirely by outcrossing, entirely by self‐fertilizing, or by a mixture of outcrossing and selfing. Entirely selfing populations responded mainly by evolving larger flowers whereas outcrossing populations also evolved more rapid development. Divergence occurred despite an equivalent selection regime and no direct effect of mating system on fitness. The study provides an experimental demonstration of how the interaction of selection, genetic drift, and mating system can produce dramatic short‐term changes in trait means, variances, and covariances.  相似文献   
95.
96.
97.
Postmating reproductive isolation can help maintain species boundaries when premating barriers to reproduction are incomplete. The strength and identity of postmating reproductive barriers are highly variable among diverging species, leading to questions about their genetic basis and evolutionary drivers. These questions have been tackled in model systems but are less often addressed with broader phylogenetic resolution. In this study we analyse patterns of genetic divergence alongside direct measures of postmating reproductive barriers in an overlooked group of sympatric species within the model monkeyflower genus, Mimulus. Within this Mimulus brevipes species group, we find substantial divergence among species, including a cryptic genetic lineage. However, rampant gene discordance and ancient signals of introgression suggest a complex history of divergence. In addition, we find multiple strong postmating barriers, including postmating prezygotic isolation, hybrid seed inviability and hybrid male sterility. M. brevipes and M. fremontii have substantial but incomplete postmating isolation. For all other tested species pairs, we find essentially complete postmating isolation. Hybrid seed inviability appears linked to differences in seed size, providing a window into possible developmental mechanisms underlying this reproductive barrier. While geographic proximity and incomplete mating isolation may have allowed gene flow within this group in the distant past, strong postmating reproductive barriers today have likely played a key role in preventing ongoing introgression. By producing foundational information about reproductive isolation and genomic divergence in this understudied group, we add new diversity and phylogenetic resolution to our understanding of the mechanisms of plant speciation.  相似文献   
98.
The relative contribution of adaptation and phenotypic plasticity can vary between core and edge populations, with implications for invasive success. We investigated the spread of the invasive yellow monkeyflower, Erythranthe gutatta in New Zealand, where it is spreading from lowland agricultural land into high-elevation conservation areas. We investigated the extent of phenotypic variation among clones from across the South Island, looked for adaptation and compared degrees of plasticity among lowland core versus montane range-edge populations. We grew 34 clones and measured their vegetative and floral traits in two common gardens, one in the core range at 9 m a.s.l. and one near the range-edge at 560 m a.s.l. Observed trait variation was explained by a combination of genotypic diversity (as identified through common gardens) and high phenotypic plasticity. We found a subtle signature of local adaptation to lowland habitats but all clones were plastic and able to survive and reproduce in both gardens. In the range-edge garden, above-ground biomass was on average almost double and stolon length almost half that of the same clone in the core garden. Clones from low-elevation sites showed higher plasticity on average than those from higher elevation sites. The highest performing clones in the core garden were also top performers in the range-edge garden. These results suggest some highly fit general-purpose genotypes, possibly pre-adapted to New Zealand montane conditions, best explains the spread of E. gutatta from lowland to higher elevation areas.  相似文献   
99.
Hummingbird flowers are typically red in color but the reasons for this are not well understood. Relatively few studies have examined hummingbird flower color preferences under natural conditions in which flower color varies within a species. We recorded hummingbird visitation rates to flowers that vary in color from yellow to red in a natural hybrid population between red‐ and yellow‐flowered Mimulus aurantiacus subspecies. We also examined whether there were any correlations between color and flower size or nectar content. Finally, we reviewed the literature on hummingbird color choice tests using feeders and flowers. There were no correlations in this population between flower color and flower size, nectar volume, or sugar concentration. Nevertheless, hummingbirds undervisited the two most yellow color classes, overvisited orange flowers, and visited the two most red color classes in proportion to their frequency in the population. While Hummingbirds preferred flowers expressing red pigments to those that did not, the flowers with the most red hue were not the most attractive, as has been observed in similar studies with other species of Mimulus. While feeder studies generally fail to show hummingbird preference for red, all studies using flowers, including those that control all floral traits other than color, find consistent preference for red. Experiments are suggested that might help disentangle hypotheses for why hummingbirds exhibit this preference.  相似文献   
100.
Background and AimsTraditionally, local adaptation has been seen as the outcome of a long evolutionary history, particularly with regard to sexual lineages. By contrast, phenotypic plasticity has been thought to be most important during the initial stages of population establishment and in asexual species. We evaluated the roles of adaptive evolution and phenotypic plasticity in the invasive success of two closely related species of invasive monkeyflowers (Mimulus) in the UK that have contrasting reproductive strategies: M. guttatus combines sexual (seeds) and asexual (clonal growth) reproduction while M. × robertsii is entirely asexual.MethodsWe compared the clonality (number of stolons), floral and vegetative phenotype, and phenotypic plasticity of native (M. guttatus) and invasive (M. guttatus and M. × robertsii) populations grown in controlled environment chambers under the environmental conditions at each latitudinal extreme of the UK. The goal was to discern the roles of temperature and photoperiod on the expression of phenotypic traits. Next, we tested the existence of local adaptation in the two species within the invasive range with a reciprocal transplant experiment at two field sites in the latitudinal extremes of the UK, and analysed which phenotypic traits underlie potential local fitness advantages in each species.Key ResultsPopulations of M. guttatus in the UK showed local adaptation through sexual function (fruit production), while M. × robertsii showed local adaptation via asexual function (stolon production). Phenotypic selection analyses revealed that different traits are associated with fitness in each species. Invasive and native populations of M. guttatus had similar phenotypic plasticity and clonality. M. × robertsii presents greater plasticity and clonality than native M. guttatus, but most populations have restricted clonality under the warm conditions of the south of the UK.ConclusionsThis study provides experimental evidence of local adaptation in a strictly asexual invasive species with high clonality and phenotypic plasticity. This indicates that even asexual taxa can rapidly (<200 years) adapt to novel environmental conditions in which alternative strategies may not ensure the persistence of populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号