首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   962篇
  免费   116篇
  国内免费   139篇
  1217篇
  2024年   3篇
  2023年   42篇
  2022年   34篇
  2021年   31篇
  2020年   58篇
  2019年   50篇
  2018年   36篇
  2017年   55篇
  2016年   49篇
  2015年   39篇
  2014年   52篇
  2013年   44篇
  2012年   36篇
  2011年   41篇
  2010年   47篇
  2009年   46篇
  2008年   61篇
  2007年   53篇
  2006年   53篇
  2005年   55篇
  2004年   30篇
  2003年   43篇
  2002年   25篇
  2001年   30篇
  2000年   22篇
  1999年   29篇
  1998年   20篇
  1997年   18篇
  1996年   13篇
  1995年   9篇
  1994年   23篇
  1993年   10篇
  1992年   7篇
  1991年   4篇
  1990年   9篇
  1989年   5篇
  1988年   2篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   6篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
  1976年   2篇
  1970年   1篇
排序方式: 共有1217条查询结果,搜索用时 15 毫秒
61.
An intensive regional research campaign was conducted by the North American Carbon Program (NACP) in 2007 to study the carbon cycle of the highly productive agricultural regions of the Midwestern United States. Forty‐five different associated projects were conducted across five US agencies over the course of nearly a decade involving hundreds of researchers. One of the primary objectives of the intensive campaign was to investigate the ability of atmospheric inversion techniques to use highly calibrated CO2 mixing ratio data to estimate CO2 flux over the major croplands of the United States by comparing the results to an inventory of CO2 fluxes. Statistics from densely monitored crop production, consisting primarily of corn and soybeans, provided the backbone of a well studied bottom‐up inventory flux estimate that was used to evaluate the atmospheric inversion results. Estimates were compared to the inventory from three different inversion systems, representing spatial scales varying from high resolution mesoscale (PSU), to continental (CSU) and global (CarbonTracker), coupled to different transport models and optimization techniques. The inversion‐based mean CO2‐C sink estimates were generally slightly larger, 8–20% for PSU, 10–20% for CSU, and 21% for CarbonTracker, but statistically indistinguishable, from the inventory estimate of 135 TgC. While the comparisons show that the MCI region‐wide C sink is robust across inversion system and spatial scale, only the continental and mesoscale inversions were able to reproduce the spatial patterns within the region. In general, the results demonstrate that inversions can recover CO2 fluxes at sub‐regional scales with a relatively high density of CO2 observations and adequate information on atmospheric transport in the region.  相似文献   
62.
Summary Studies were carried out to evaluate sugarcane bagasse as an alternative to agar for micropropagation of apple clones to reduce the cost of micropropagation and improve the quality of the propagules. Significant improvement in the in vitro rooting process, coupled with cost reduction, were obtained by the use of sugarcane bagasse as a substitute for the traditionally used agar-gelled medium. The tests were undertaken with micro-cuttings of the apple rootstock Marubakaido (Malus prunifolia Borkh.) using a rooting medium composed of half-strength Murashige and Skoog salts and vitamins, 3% (w/v) sucrose, and 0.49 μM indole-3-butyric acid. The plants grown on sugarcane bagasse yielded a 22% increase in root length, 20% increase in plant length, and 63% increase in the number of roots, compared with agar-grown micro-cuttings. Particle size of the sugarcane bagasse had a significant impact on all those parameters, and the best results were obtained with bagasse comprising particles smaller than 0.18 mm. The results demonstrated that the sugarcane bagasse could be used effectively as a substitute for agar during rooting of apple shoots.  相似文献   
63.
本文研究了3种栽培模式(农业栽培模式、苹果园栽培模式和灌丛林带栽培模式)对黄山药新根茎生长量的影响,分析了3种模式的利弊和规模化发展黄山药的可能性,为多途径规模化发展黄山药提供了理论依据和技术范例。  相似文献   
64.
Summary Millet plants (Pennisetum glaucum) were grown at three levels of nitrogen fertilization with and without an inoculum of live nitrogen-fixing Azospirillum cells. The highest average rate of nitrogen fixation as estimated from acetylene reduction by excised preincubated roots was only 23g N2 fixed per ha per day and occurred after treatment with low levels of nitrogen amendment. The average rates of acetylene reduction for intact plants at all treatments were also low. The lack of significant nitrogen fixation due to an Azospirillum-millet association in this study was substantiated by plant dry weight analysis, and determination of the nitrogen content of plants, pot leachate, and soil. There was significant correlation between the total nitrogen content of the plants per pot at the termination of the experiment and the amount of nitrogen fertilizer added initially, but there was no effect of inoculum on final total nitrogen content.  相似文献   
65.
项目实施13年。收集、保护了一批濒临灭绝的黍稷种质;对国家长期库黍稷种质进行了繁殖更新与补充鉴定;研究制定了黍稷种质资源繁种更新与鉴定评价技术规范;为国家长期种质库提供了黍稷新的种质资源、数据资源;建立国家黍稷种质中期保存库;评价创新了一批黍稷种质资源,为生产、育种、加工提供了优异种质(品种),取得了明显的社会经济效益。  相似文献   
66.
Urban livestock husbandry receives growing attention given the increasing urban demand for livestock products. At the same time, little is known about the resource use efficiency in urban livestock enterprises and eventual negative externalities. In livestock production, feeds are an important resource whose nutrients are transformed into products (meat and milk) to generate financial return to the producer. The lack of knowledge on nutrient supply through feed might lead to oversupply with severe environmental impacts. In Niamey, a typical West African city and capital of the Republic of Niger, urban livestock production is constrained by feed scarcity, especially during the dry season. Here, the issue of resource use efficiency was studied in 13 representative and differently managed sheep/goat and cattle enterprises characterized by high and low feed inputs, respectively, during a period of 28 months. Nitrogen (N), phosphorus (P) and potassium (K) inflows into each farm through livestock feeds and outflows through manure were determined using a semi-structured questionnaire; interviews were accompanied by regular weighing of feed supplied and dung produced. Live weight gain (LWG) and efficiency of conversion of total feed dry matter offered (kg TDMO/kg LWG) were computed along with nutrient balances (NBs) per metabolic body mass (kg0.75). NBs (per kg0.75/day) in the high-input (HI) sheep/goat enterprises were +1762.4 mg N, +127.2 mg P and +1363.5 mg K and were significantly greater (P < 0.05) than those in low-input (LI) units (+69.1 mg N, -98.3 mg P and +16.5 mg K). In HI cattle enterprises, daily balances averaged +454.1 mg N, +40.1 mg P and +341.8 mg K compared to +34.4 mg N, -9.0 mg P and +68.3 mg K (P > 0.05) in LI cattle systems. All systems were characterized by poor conversion efficiencies of offered feed, which ranged from 13.5 to 46.1 kg TDMO/kg LWG in cattle and from 15.7 to 43.4 kg TDMO/kg LWG in sheep/goats. LWG in HI sheep/goats was 53 g/day in the rainy season, 86 g/day in the hot dry season and 104 g/day in the cool dry season, while HI cattle lost 79 g/day in the hot dry season and gained 121 g/day and 92 g/day in the cool dry and rainy seasons, respectively. The data indicate that there is nutrient wasting and scope for improvement of feeding strategies in Niamey's livestock enterprises, which might also decrease nutrient losses to the urban environment.  相似文献   
67.
In the Midwestern US, perennial rhizomatous grasses (PRGs) are considered one of the most promising vegetation types to be used as a cellulosic feedstock for renewable energy production. The potential widespread use of biomass crops for renewable energy production has sparked numerous environmental concerns, including the impacts of land‐use change on the hydrologic cycle. We predicted that total seasonal evapotranspiration (ET) would be higher for PRGs relative to maize resulting from higher leaf area and a prolonged growing season. We further predicted that, compared with maize, higher aboveground biomass associated with PRGs would offset the higher ET and increase water‐use efficiency (WUE) in the context of biomass harvests for liquid biofuel production. To test these predictions, ET was estimated during the 2007 growing season for replicated plots of Miscanthus×giganteus (miscanthus), Panicum virgatum (switchgrass), and Zea mays (maize) using a residual energy balance approach. The combination of a 25% higher mean latent heat flux (λET) and a longer growing season resulted in miscanthus having ca. 55% higher cumulative ET over the growing season compared with maize. Cumulative ET for switchgrass was also higher than maize despite similar seasonal‐mean λET. Based on total harvested aboveground biomass, WUE was ca. 50% higher for maize relative to miscanthus; however, when WUE calculated from only maize grain biomass was compared with WUE calculated from miscanthus harvested aboveground biomass, this difference disappeared. Although WUE between maize and miscanthus differed postsenescence, there were no differences in incremental WUE throughout the growing season. Despite initial predictions, aboveground biomass for switchgrass was less than maize; thus WUE was substantially lower for switchgrass than for either maize scenario. These results indicate that changes in ET due to large‐scale implementation of PRGs in the Midwestern US would likely influence local and regional hydrologic cycles differently than traditional row crops.  相似文献   
68.
Grasslands in southeastern South America have been extensively converted to various land uses such as agriculture, threatening regional biodiversity. Active restoration has been viewed as a management alternative for recovery of degraded areas worldwide, although most studies are conducted in forests and none has evaluated the effect of active restoration of grasslands in southeastern South America. From 2015 through 2017 we monitored a federally owned tract of grassland from the beginning of the active‐restoration process. We compared the bird community in this active‐restoration area (AR) with a reference area (NG) in Pampa grasslands in southern Brazil. We sampled birds by point counts and surveyed vegetation structure in plots. Over the 3 years of active restoration, bird species richness and abundance were higher in AR (30 species, 171 individuals) than NG (22 species, 154 individuals). The species composition also differed between the two habitats. Grassland bird species were present in both AR and NG. The vegetation structure differed between AR and NG in five attributes: height, short and tall grasses, herbs, and shrubs. Since it has been found that active restoration is useful in promoting species diversity, we encourage studies of the use of long‐term restoration efforts. Our study, even on a local scale, showed a rapid recovery of the bird community in the active‐restoration compared to native grassland, and suggests the potential for recovery of the degraded grasslands of the Brazilian Pampa biome.  相似文献   
69.
This study reports on the carbon, water, and energy footprints of tomatoes grown in a greenhouse in Northern Italy and two possible future variations of heating and carbon dioxide (CO2) fertilization on the current setup. The heat supply in place, consisting of natural gas (NG) and canola oil combustion, is compared to cogeneration and incineration of municipal solid waste for heating and CO2 from industrial exhaust for fertilization. As a benchmark, the current system is also compared to a conventional system, in which heat is delivered solely based on NG. Each kilogram (kg) of fresh tomatoes (“Cuore di Bue” variety) produced in the current greenhouse emits 2.28 kg CO2 equivalents (eq) and uses 95.5 megajoules (MJ) eq energy and 122 liters (L) of water. Relative to the system in place, the carbon footprint (CF) is 57.5% and 18% higher with conventional NG heating and cogeneration and is 40% lower with waste valorization. Further, 33%, 55%, and 63% less energy and 9%, 96%, and 14% less water are used in the conventional, cogeneration, and waste valorization scenarios, respectively. This confirms that there are multiple strategies to reduce the impact of the tomato production under consideration.  相似文献   
70.
Crop production is facing unprecedented challenges. Despite the fact that the food supply has significantly increased over the past half-century, ~8.9 and 14.3% people are still suffering from hunger and malnutrition, respectively. Agricultural environments are continuously threatened by a booming world population, a shortage of arable land, and rapid changes in climate. To ensure food and ecosystem security, there is a need to design future crops for sustainable agriculture development by maximizing net production and minimalizing undesirable effects on the environment. The future crops design projects, recently launched by the National Natural Science Foundation of China and Chinese Academy of Sciences (CAS), aim to develop a roadmap for rapid design of customized future crops using cutting-edge technologies in the Breeding 4.0 era. In this perspective, we first introduce the background and missions of these projects. We then outline strategies to design future crops, such as improvement of current well-cultivated crops, de novo domestication of wild species and redomestication of current cultivated crops. We further discuss how these ambitious goals can be achieved by the recent development of new integrative omics tools, advanced genome-editing tools and synthetic biology approaches. Finally, we summarize related opportunities and challenges in these projects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号