首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1530篇
  免费   146篇
  国内免费   169篇
  2024年   28篇
  2023年   113篇
  2022年   195篇
  2021年   202篇
  2020年   194篇
  2019年   190篇
  2018年   128篇
  2017年   116篇
  2016年   56篇
  2015年   73篇
  2014年   74篇
  2013年   77篇
  2012年   44篇
  2011年   58篇
  2010年   35篇
  2009年   36篇
  2008年   33篇
  2007年   38篇
  2006年   25篇
  2005年   28篇
  2004年   20篇
  2003年   14篇
  2002年   13篇
  2001年   3篇
  2000年   7篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
排序方式: 共有1845条查询结果,搜索用时 265 毫秒
131.
132.
The composition of the skin microbiota of amphibians is related to the biology of host species and environmental microbial communities. In this system, the environment serves as a microbial source and can modulate the hosted community. When habitats are fragmented and the environment disturbed, changes in the structure of this microbial community are expected. One important potential consequence of fragmentation is a compromised protective function of the microbiota against pathogenic microorganisms. In this study, the skin microbiota of the amphibian Proceratophrys boiei was characterized, evaluated for relationships with environmental variables and environmental sources of microbial communities, and its diversity evaluated for frog populations from fragmented and continuous forests. In addition, the antimicrobial activity of this skin community was studied in frogs from both forest types. Culture methods and 16S rRNA high‐throughput gene sequencing were used to characterize the microbial community and demonstrated that the skin microbiota of P. boiei is more closely related to the soil microbial communities than those inhabiting water bodies or fragment matrix, the unforested area around the forested fragment. The microbial diversity and abundance of Pboiei skin microbiota are different between continuous forests and fragments. This community is correlated with environmental variables, especially with temperature of microhabitat and distance to human dwelling. All individuals of P. boiei harbored bacteria capable of inhibiting the growth of pathogenic bacteria and different strains of the pathogenic fungus Batrachochytrium dendrobatidis, and a total of 27 bacterial genera were detected. The results of this study indicate that the persistence of populations of this species will need balanced and sustained interactions among host, microorganisms, and environment.  相似文献   
133.
Microbes can have important impacts on their host's survival. Captive breeding programs for endangered species include periods of captivity that can ultimately have an impact on reintroduction success. No study to date has investigated the impacts of captive diet on the gut microbiota during the relocation process of generalist species. This study simulated a captive breeding program with white‐footed mice (Peromyscus leucopus) to describe the variability in gut microbial community structure and composition during captivity and relocation in their natural habitat, and compared it to wild individuals. Mice born in captivity were fed two different diets, a control with dry standardized pellets and a treatment with nonprocessed components that reflect a version of their wild diet that could be provided in captivity. The mice from the two groups were then relocated to their natural habitat. Relocated mice that had the treatment diet had more phylotypes in common with the wild‐host microbiota than mice under the control diet or mice kept in captivity. These results have broad implications for our understanding of microbial community dynamics and the effects of captivity on reintroduced animals, including the potential impact on the survival of endangered species. This study demonstrates that ex situ conservation actions should consider a more holistic perspective of an animal's biology including its microbes.  相似文献   
134.
Bifidobacterium is one of the dominating bacterial genera in the honey bee gut, and they are the key degrader of diet polysaccharides for the host. Previous genomic analysis shows that they belong to separate phylogenetic clusters and exhibited different functional potentials in hemicellulose digestion. Here, three novel strains from the genus Bifidobacterium were isolated from the guts of the honey bee (Apis mellifera). Phylogenomic analysis showed that the isolates could be grouped into four phylogenetic clusters. The average nucleotide identity values between strains from different clusters are <95%, while strains in Cluster IV belong to the characterized species Bifidobacterium asteroides. Carbohydrate-active enzyme annotation confirmed that the metabolic capacity for carbohydrates varied between clusters of strains. Cells are Gram-positive rods; they grew both anaerobically and in a CO2-enriched atmosphere. All strains grew at a temperature range of 20–42 °C, with optimum growth at 35 °C. The pH range for growth was 5–9. Strains from different phylogenetic clusters varied in multiple phenotypic and chemotaxonomic characterizations. Thus, we propose three novel species Bifidobacterium apousia sp. nov. whose type strain is W8102T (=CGMCC 1.18893 T = JCM 34587 T), Bifidobacterium choladohabitans sp. nov., whose type strain is B14384H11T (=CGMCC 1.18892 T = JCM 34586 T), and Bifidobacterium polysaccharolyticum sp. nov. whose type strain is W8117T (=CGMCC 1.18894 T = JCM 34588 T).  相似文献   
135.
Variation in gene expression contributes to ecological speciation by facilitating population persistence in novel environments. Likewise, immune responses can be of relevance in speciation driven by adaptation to different environments. Previous studies examining gene expression differences between recently diverged ecotypes have often relied on only one pair of populations, targeted the expression of only a subset of genes or used wild‐caught individuals. Here, we investigated the contribution of habitat‐specific parasites and symbionts and the underlying immunological abilities of ecotype hosts to adaptive divergence in lake–river population pairs of the cichlid fish Astatotilapia burtoni. To shed light on the role of phenotypic plasticity in adaptive divergence, we compared parasite and microbiota communities, immune response, and gene expression patterns of fish from natural habitats and a lake‐like pond set‐up. In all investigated population pairs, lake fish were more heavily parasitized than river fish, in terms of both parasite taxon composition and infection abundance. The innate immune response in the wild was higher in lake than in river populations and was elevated in a river population exposed to lake parasites in the pond set‐up. Environmental differences between lake and river habitat and their distinct parasite communities have shaped differential gene expression, involving genes functioning in osmoregulation and immune response. Most changes in gene expression between lake and river samples in the wild and in the pond set‐up were based on a plastic response. Finally, gene expression and bacterial communities of wild‐caught individuals and individuals acclimatized to lake‐like pond conditions showed shifts underlying adaptive phenotypic plasticity.  相似文献   
136.
《遗传学报》2021,48(9):792-802
Gut microbial dysbiosis has been linked to many noncommunicable diseases. However, little is known about specific gut microbiota composition and its correlated metabolites associated with molecular signatures underlying host response to infection. Here, we describe the construction of a proteomic risk score based on 20 blood proteomic biomarkers, which have recently been identified as molecular signatures predicting the progression of the COVID-19. We demonstrate that in our cohort of 990 healthy individuals without infection, this proteomic risk score is positively associated with proinflammatory cytokines mainly among older, but not younger, individuals. We further discover that a core set of gut microbiota can accurately predict the above proteomic biomarkers among 301 individuals using a machine learning model and that these gut microbiota features are highly correlated with proinflammatory cytokines in another independent set of 366 individuals. Fecal metabolomics analysis suggests potential amino acid-related pathways linking gut microbiota to host metabolism and inflammation. Overall, our multi-omics analyses suggest that gut microbiota composition and function are closely related to inflammation and molecular signatures of host response to infection among healthy individuals. These results may provide novel insights into the cross-talk between gut microbiota and host immune system.  相似文献   
137.
Emerging evidence suggests that a high-fat diet (HFD) can influence endoplasmic reticulum (ER) stress and gut microbiota. Crataegi Fructus is a traditional Chinese herb widely used in formulas for dyspepsia, with Dashanzha Pill composed of raw Crataegi Fructus (DR) being a representative drug. Processing products of Crataegi Fructus, however, have a stronger pro-digestive effect, and we hypothesized that Dashanzha Pill composed of charred Crataegi Fructus (DC) is more effective. We found that the contents of glucose 1-phosphate and luteolin in DR and DC were substantially different via ultra-high performance liquid chromatography-hybrid quadrupole-Orbitrap high-resolution mass spectrometry. DC outperformed DR in improving histopathological changes, increasing gastrin and motilin, and decreasing vasoactive intestinal peptides in rats with HFD induced dyspepsia. Fecal microbiota analysis revealed that DC could restore the disturbed intestinal microbiota composition, including that of Bacteroides, Akkermansia, and Intestinimonas to normal levels. Furthermore, DC significantly reduced the mRNA and protein levels of glucose-regulated protein 78, protein kinase R-like ER kinase, and eukaryotic initiation factor 2α. Taken together, DC outperformed DR in relieving dyspepsia by regulating gut microbiota and alleviating ER stress.  相似文献   
138.
目的探究中部和西部地区幼儿肠道菌群的结构差异与膳食的关系,为幼儿营养健康状况监测和营养改善工作提供有效的营养干预。方法选择“贫困地区儿童营养改善项目”河南汝阳和贵州福泉,随机抽取107名汉族健康幼儿为调查对象,食物摄入采用24 h消费调查方法。应用高通量测序技术对肠道菌群进行测序和生物信息分析,研究两县幼儿肠道菌群差异。结果两县幼儿肠道菌群组成结构较为一致,但Alpha多样性分析表明,贵州福泉县幼儿肠道物种丰富度和多样性高于河南汝阳县。细菌属水平分析中,两县幼儿肠道内均以拟杆菌属、普雷沃菌、柔嫩梭菌和双歧杆菌属为主导的菌群结构,但河南汝阳县幼儿肠道双歧杆菌属和乳杆菌属丰度显著高于贵州福泉县(12.36% vs. 7.44%;0.19% vs. 0.03%)。结论中西部地区幼儿肠道菌群结构差异不大,但有益菌含量存在显著差异,这为研究肠道菌群与膳食及营养健康状况之间的关系提供了依据。  相似文献   
139.
140.
《Free radical research》2013,47(11-12):1245-1266
Abstract

The intestinal tract, known for its capability for self-renew, represents the first barrier of defence between the organism and its luminal environment. The thiol/disulfide redox systems comprising the glutathione/glutathione disulfide (GSH/GSSG), cysteine/cystine (Cys/CySS) and reduced and oxidized thioredoxin (Trx/TrxSS) redox couples play important roles in preserving tissue redox homeostasis, metabolic functions, and cellular integrity. Control of the thiol-disulfide status at the luminal surface is essential for maintaining mucus fluidity and absorption of nutrients, and protection against chemical-induced oxidant injury. Within intestinal cells, these redox couples preserve an environment that supports physiological processes and orchestrates networks of enzymatic reactions against oxidative stress. In this review, we focus on the intestinal redox and antioxidant systems, their subcellular compartmentation, redox signalling and epithelial turnover, and contribution of luminal microbiota, key aspects that are relevant to understanding redox-dependent processes in gut biology with implications for degenerative digestive disorders, such as inflammation and cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号