首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12879篇
  免费   1171篇
  国内免费   782篇
  14832篇
  2024年   46篇
  2023年   252篇
  2022年   278篇
  2021年   384篇
  2020年   447篇
  2019年   700篇
  2018年   575篇
  2017年   580篇
  2016年   543篇
  2015年   504篇
  2014年   619篇
  2013年   1307篇
  2012年   379篇
  2011年   556篇
  2010年   501篇
  2009年   705篇
  2008年   764篇
  2007年   625篇
  2006年   645篇
  2005年   500篇
  2004年   519篇
  2003年   434篇
  2002年   374篇
  2001年   258篇
  2000年   271篇
  1999年   254篇
  1998年   238篇
  1997年   204篇
  1996年   192篇
  1995年   176篇
  1994年   136篇
  1993年   112篇
  1992年   118篇
  1991年   102篇
  1990年   75篇
  1989年   64篇
  1988年   52篇
  1987年   61篇
  1986年   47篇
  1985年   52篇
  1984年   39篇
  1983年   16篇
  1982年   29篇
  1981年   30篇
  1980年   18篇
  1979年   10篇
  1978年   13篇
  1977年   8篇
  1976年   6篇
  1973年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Creatine kinase (CK) isoenzymes catalyse the reversible transfer of a phosphoryl group from ATP onto creatine. This reaction plays a very important role in the regulation of intracellular ATP concentrations in excitable tissues. CK isoenzymes are highly resistant to proteases in native conditions. To appreciate localized backbone dynamics, kinetics of amide hydrogen exchange with deuterium was measured by pulse-labeling the dimeric cytosolic muscle CK isoenzyme. Upon exchange, the protein was digested with pepsin, and the deuterium content of the resulting peptides was determined by liquid chromatography coupled to mass spectrometry (MS). The deuteration kinetics of 47 peptides identified by MS/MS and covering 96% of the CK backbone were analyzed. Four deuteration patterns have been recognized: The less deuterated peptides are located in the saddle-shaped core of CK, whereas most of the highly deuterated peptides are close to the surface and located around the entrance to the active site. Their exchange kinetics are discussed by comparison with the known secondary and tertiary structures of CK with the goal to reveal the conformational dynamics of the protein. Some of the observed dynamic motions may be linked to the conformational changes associated with substrate binding and catalytic mechanism.  相似文献   
82.
Quantifying patterns of fine root dynamics is crucial to the understanding of ecosystem structure and function, and in predicting how ecosystems respond to disturbance. Part of this understanding involves consideration of the carbon lost through root turnover. In the context of the rainfall pattern in the tropics, it was hypothesised that rainfall would strongly influence fine root biomass and longevity. A field study was conducted to determine root biomass, elemental composition and the influence of rainfall on longevity of fine roots in a tropical lowland evergreen rainforest at Danum Valley, Sabah, Malaysia. A combination of root coring, elemental analysis and rhizotron observation methods were used. Fine (less than 2 mm diameter) root biomass was relatively low (1700 kg ha −1) compared with previously described rainforest data. Standing root biomass was positively correlated with preceding rainfall, and the low fine root biomass in the dry season contained higher concentrations of N and lower concentrations of P and K than at other times. Observations on rhizotrons demonstrated that the decrease in fine root biomass in the dry season was a product of both a decrease in fine root length appearance and an increase in fine root length disappearance. Fitting an overall model to root survival time showed significant effects of rainfall preceding root disappearance, with the hazard of root disappearance decreasing by 8 for each 1 mm increase in the average daily (30 day) rainfall preceding root disappearance. While it is acknowledged that other factors have a part to play, this work demonstrates the importance of rainfall and soil moisture in influencing root biomass and root disappearance in this tropical rainforest.  相似文献   
83.
Lu W  Negi SS  Oberhauser AF  Braun W 《Proteins》2012,80(5):1308-1315
Use of atomic force microscopy (AFM) has recently led to a better understanding of the molecular mechanisms of the unfolding process by mechanical forces; however, the rational design of novel proteins with specific mechanical strength remains challenging. We have approached this problem from a new perspective that generates linear physical–chemical properties (PCP) motifs from a limited AFM data set. Guided by our linear sequence analysis, we designed and analyzed four new mutants of the titin I1 domain with the goal of increasing the domain's mechanical strength. All four mutants could be cloned and expressed as soluble proteins. AFM data indicate that at least two of the mutants have increased molecular mechanical strength. This observation suggests that the PCP method is useful to graft sequences specific for high mechanical stability to weak proteins to increase their mechanical stability, and represents an additional tool in the design of novel proteins besides steered molecular dynamics calculations, coarse grained simulations, and ?‐value analysis of the transition state. Proteins 2012; © 2011 Wiley Periodicals, Inc.  相似文献   
84.
Water dynamics clue to key residues in protein folding   总被引:1,自引:0,他引:1  
A computational method independent of experimental protein structure information is proposed to recognize key residues in protein folding, from the study of hydration water dynamics. Based on all-atom molecular dynamics simulation, two key residues are recognized with distinct water dynamical behavior in a folding process of the Trp-cage protein. The identified key residues are shown to play an essential role in both 3D structure and hydrophobic-induced collapse. With observations on hydration water dynamics around key residues, a dynamical pathway of folding can be interpreted.  相似文献   
85.
DNA ligases are essential guardians of genome integrity by virtue of their ability to recognize and seal 3′-OH/5′-phosphate nicks in duplex DNA. The substrate binding and three chemical steps of the ligation pathway are coupled to global and local changes in ligase structure, involving both massive protein domain movements and subtle remodeling of atomic contacts in the active site. Here we applied solution NMR spectroscopy to study the conformational dynamics of the Chlorella virus DNA ligase (ChVLig), a minimized eukaryal ATP-dependent ligase consisting of nucleotidyltransferase, OB, and latch domains. Our analysis of backbone 15N spin relaxation and 15N,1H residual dipolar couplings of the covalent ChVLig-AMP intermediate revealed conformational sampling on fast (picosecond to nanosecond) and slow timescales (microsecond to millisecond), indicative of interdomain and intradomain flexibility. We identified local and global changes in ChVLig-AMP structure and dynamics induced by phosphate. In particular, the chemical shift perturbations elicited by phosphate were clustered in the peptide motifs that comprise the active site. We hypothesize that phosphate anion mimics some of the conformational transitions that occur when ligase-adenylate interacts with the nick 5′-phosphate.  相似文献   
86.
Torbert  H. A.  Prior  S. A.  Rogers  H. H.  Wood  C. W. 《Plant and Soil》2000,224(1):59-73
A series of studies using major crops (cotton [Gossypium hirsutum L.], wheat [Triticum aestivum L.], grain sorghum [Sorghum bicolor (L.) Moench.] and soybean [Glycine max (L.) Merr.]) were reviewed to examine the impact of elevated atmospheric CO2 on crop residue decomposition within agro-ecosystems. Experiments evaluated utilized plant and soil material collected from CO2 study sites using Free Air CO2 Enrichment (FACE) and open top chambers (OTC). A incubation study of FACE residue revealed that CO2-induced changes in cotton residue composition could alter decomposition processes, with a decrease in N mineralization observed with FACE, which was dependent on plant organ and soil series. Incubation studies utilizing plant material grown in OTC considered CO2-induced changes in relation to quantity and quality of crop residue for two species, soybean and grain sorghum. As with cotton, N mineralization was reduced with elevated CO2 in both species, however, difference in both quantity and quality of residue impacted patterns of C mineralization. Over the short-term (14 d), little difference was observed for CO2 treatments in soybean, but C mineralization was reduced with elevated CO2 in grain sorghum. For longer incubation periods (60 d), a significant reduction in CO2-C mineralized per g of residue added was observed with the elevated atmospheric CO2 treatment in both crop species. Results from incubation studies agreed with those from the OTC field observations for both measurements of short-term CO2 efflux following spring tillage and the cumulative effect of elevated CO2 (> 2 years) in this study. Observations from field and laboratory studies indicate that with elevated atmospheric CO2, the rate of plant residue decomposition may be limited by N and the release of N from decomposing plant material may be slowed. This indicates that understanding N cycling as affected by elevated CO2 is fundamental to understanding the potential for soil C storage on a global scale. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
87.
DEAD-box proteins utilize ATP to bind and remodel RNA and RNA-protein complexes. All DEAD-box proteins share a conserved core that consists of two RecA-like domains. The core is flanked by subfamily-specific extensions of idiosyncratic function. The Ded1/DDX3 subfamily of DEAD-box proteins is of particular interest as members function during protein translation, are essential for viability, and are frequently altered in human malignancies. Here, we define the function of the subfamily-specific extensions of the human DEAD-box protein DDX3. We describe the crystal structure of the subfamily-specific core of wild-type DDX3 at 2.2 Å resolution, alone and in the presence of AMP or nonhydrolyzable ATP. These structures illustrate a unique interdomain interaction between the two ATPase domains in which the C-terminal domain clashes with the RNA-binding surface. Destabilizing this interaction accelerates RNA duplex unwinding, suggesting that it is present in solution and inhibitory for catalysis. We use this core fragment of DDX3 to test the function of two recurrent medulloblastoma variants of DDX3 and find that both inactivate the protein in vitro and in vivo. Taken together, these results redefine the structural and functional core of the DDX3 subfamily of DEAD-box proteins.  相似文献   
88.
89.
A number of studies have examined the structural properties of late folding intermediates of (beta/alpha)8-barrel proteins involved in tryptophan biosynthesis, whereas there is little information available about the early folding events of these proteins. To identify the contiguous polypeptide segments important to the folding of the (beta/alpha)8-barrel protein Escherichia coli N-(5'-phosphoribosyl)anthranilate isomerase, we structurally characterized fragments and circularly permuted forms of the protein. We also simulated thermal unfolding of the protein using molecular dynamics. Our fragmentation experiments demonstrate that the isolated (beta/alpha)(1-4)beta5 fragment is almost as stable as the full-length protein. The far and near-UV CD spectra of this fragment are indicative of native-like secondary and tertiary structures. Structural analysis of the circularly permutated proteins shows that if the protein is cleaved within the two N-terminal betaalpha modules, the amount of secondary structure is unaffected, whereas, when cleaved within the central (beta/alpha)(3-4)beta5 segment, the protein simply cannot fold. An ensemble of the denatured structures produced by thermal unfolding simulations contains a persistent local structure comprised of beta3, beta4 and beta5. The presence of this three-stranded beta-barrel suggests that it may be an important early-stage folding intermediate. Interactions found in (beta/alpha)(3-4)beta5 may be essential for the early events of ePRAI folding if they provide a nucleation site that directs folding.  相似文献   
90.
The flexibility of different regions of HIV-1 protease was examined by using a database consisting of 73 X-ray structures that differ in terms of sequence, ligands or both. The root-mean-square differences of the backbone for the set of structures were shown to have the same variation with residue number as those obtained from molecular dynamics simulations, normal mode analyses and X-ray B-factors. This supports the idea that observed structural changes provide a measure of the inherent flexibility of the protein, although specific interactions between the protease and the ligand play a secondary role. The results suggest that the potential energy surface of the HIV-1 protease is characterized by many local minima with small energetic differences, some of which are sampled by the different X-ray structures of the HIV-1 protease complexes. Interdomain correlated motions were calculated from the structural fluctuations and the results were also in agreement with molecular dynamics simulations and normal mode analyses. Implications of the results for the drug-resistance engendered by mutations are discussed briefly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号