首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12879篇
  免费   1171篇
  国内免费   782篇
  14832篇
  2024年   46篇
  2023年   252篇
  2022年   278篇
  2021年   384篇
  2020年   447篇
  2019年   700篇
  2018年   575篇
  2017年   580篇
  2016年   543篇
  2015年   504篇
  2014年   619篇
  2013年   1307篇
  2012年   379篇
  2011年   556篇
  2010年   501篇
  2009年   705篇
  2008年   764篇
  2007年   625篇
  2006年   645篇
  2005年   500篇
  2004年   519篇
  2003年   434篇
  2002年   374篇
  2001年   258篇
  2000年   271篇
  1999年   254篇
  1998年   238篇
  1997年   204篇
  1996年   192篇
  1995年   176篇
  1994年   136篇
  1993年   112篇
  1992年   118篇
  1991年   102篇
  1990年   75篇
  1989年   64篇
  1988年   52篇
  1987年   61篇
  1986年   47篇
  1985年   52篇
  1984年   39篇
  1983年   16篇
  1982年   29篇
  1981年   30篇
  1980年   18篇
  1979年   10篇
  1978年   13篇
  1977年   8篇
  1976年   6篇
  1973年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Through simple model analysis, the mass action kinetic model for lipolytic enzymes in biphasic aqueous-organic systems can be simplified using the quasi-steady state assumption (or the quasi-equilibrium state assumption) for the adsorbed enzyme E* or the enzyme-substrate complex E*S. Some parameter combinations leading to the above assumptions are derived confirmed by full numerical integration of the whole enzymatic process. The results may be classified into three categories: (1) the quasi-equilibrium state assumption for E*, (2) the quasi-steady state assumption for E*, and (3) the quasi-steady state assumption for E*S. Further simplification for both E* and E*S is also discussed. (c) 1993 Wiley & Sons, Inc.  相似文献   
62.
Mangroves are among the most carbon-dense ecosystems worldwide. Most of the carbon in mangroves is found belowground, and root production might be an important control of carbon accumulation, but has been rarely quantified and understood at the global scale. Here, we determined the global mangrove root production rate and its controls using a systematic review and a recently formalised, spatially explicit mangrove typology framework based on geomorphological settings. We found that global mangrove root production averaged ~770 ± 202 g of dry biomass m−2 year−1 globally, which is much higher than previously reported and close to the root production of the most productive tropical forests. Geomorphological settings exerted marked control over root production together with air temperature and precipitation (r2 ≈ 30%, p < .001). Our review shows that individual global changes (e.g. warming, eutrophication, drought) have antagonist effects on root production, but they have rarely been studied in combination. Based on this newly established root production rate, root-derived carbon might account for most of the total carbon buried in mangroves, and 19 Tg C lost in mangroves each year (e.g. as CO2). Inclusion of root production measurements in understudied geomorphological settings (i.e. deltas), regions (Indonesia, South America and Africa) and soil depth (>40 cm), as well as the creation of a mangrove root trait database will push forward our understanding of the global mangrove carbon cycle for now and the future. Overall, this review presents a comprehensive analysis of root production in mangroves, and highlights the central role of root production in the global mangrove carbon budget.  相似文献   
63.
Managing ecological communities requires fast detection of species that are sensitive to perturbations. Yet, the focus on recovery to equilibrium has prevented us from assessing species responses to perturbations when abundances fluctuate over time. Here, we introduce two data-driven approaches (expected sensitivity and eigenvector rankings) based on the time-varying Jacobian matrix to rank species over time according to their sensitivity to perturbations on abundances. Using several population dynamics models, we demonstrate that we can infer these rankings from time-series data to predict the order of species sensitivities. We find that the most sensitive species are not always the ones with the most rapidly changing or lowest abundance, which are typical criteria used to monitor populations. Finally, using two empirical time series, we show that sensitive species tend to be harder to forecast. Our results suggest that incorporating information on species interactions can improve how we manage communities out of equilibrium.  相似文献   
64.
Mutualism is thought to face a threat of coextinction cascade because the loss of a member species could lead to the extinction of the other member. Despite this common emphasis on the perils of such knock-on effect, hitherto, the evolutionary causes leading to extinction have been less emphasised. Here, we examine how extinction could be triggered in mutualism and whether an evolutionary response to partner loss could prevent collateral extinctions, by theoretically examining the coevolution of the host exploitation by symbionts and host dependence on symbiosis. Our model reveals that mutualism is more vulnerable to co-extinction through adaptive evolution (evolutionary double suicide) than parasitism. Additionally, it shows that the risk of evolutionary double suicide rarely promotes the backward evolution to an autonomous (non-symbiotic) state. Our results provide a new perspective on the evolutionary fragility of mutualism and the rarity of observed evolutionary transitions from mutualism to parasitism.  相似文献   
65.
Migration is ubiquitous and can strongly shape food webs and ecosystems. Less familiar, however, is that the majority of life cycle, seasonal and diel migrations in nature are partial migrations: only a fraction of the population migrates while the other individuals remain in their resident ecosystem. Here, we demonstrate different impacts of partial migration rendering it fundamental to our understanding of the significance of migration for food web and ecosystem dynamics. First, partial migration affects the spatiotemporal distribution of individuals and the food web and ecosystem-level processes they drive differently than expected under full migration. Second, whether an individual migrates or not is regularly correlated with morphological, physiological, and/or behavioural traits that shape its food-web and ecosystem-level impacts. Third, food web and ecosystem dynamics can drive the fraction of the population migrating, enabling the potential for feedbacks between the causes and consequences of migration within and across ecosystems. These impacts, individually and in combination, can yield unintuitive effects of migration and drive the dynamics, diversity and functions of ecosystems. By presenting the first full integration of partial migration and trophic (meta-)community and (meta-)ecosystem ecology, we provide a roadmap for studying how migration affects and is affected by ecosystem dynamics in a changing world.  相似文献   
66.
Understanding community saturation is fundamental to ecological theory. While investigations of the diversity of evolutionary stable states (ESSs) are widespread, the diversity of communities that have yet to reach an evolutionary endpoint is poorly understood. We use Lotka–Volterra dynamics and trait-based competition to compare the diversity of randomly assembled communities to the diversity of the ESS. We show that, with a large enough founding diversity (whether assembled at once or through sequential invasions), the number of long-time surviving species exceeds that of the ESS. However, the excessive founding diversity required to assemble a saturated community increases rapidly with the dimension of phenotype space. Additionally, traits present in communities resulting from random assembly are more clustered in phenotype space compared to random, although still markedly less ordered than the ESS. By combining theories of random assembly and ESSs we bring a new viewpoint to both the saturation and random assembly literature.  相似文献   
67.
Theory and analyses of fisheries data sets indicate that harvesting can alter population structure and destabilise non-linear processes, which increases population fluctuations. We conducted a factorial experiment on the population dynamics of Daphnia magna in relation to size-selective harvesting and stochasticity of food supply. Harvesting and stochasticity treatments both increased population fluctuations. Timeseries analysis indicated that fluctuations in control populations were non-linear, and non-linearity increased substantially in response to harvesting. Both harvesting and stochasticity induced population juvenescence, but harvesting did so via the depletion of adults, whereas stochasticity increased the abundance of juveniles. A fitted fisheries model indicated that harvesting shifted populations towards higher reproductive rates and larger-magnitude damped oscillations that amplify demographic noise. These findings provide experimental evidence that harvesting increases the non-linearity of population fluctuations and that both harvesting and stochasticity increase population variability and juvenescence.  相似文献   
68.
The effects of salinity on the reproduction of coastal submerged macrophyte species were studied on samples of communities from six seasonal marshes in two outdoor experiments performed in autumn and in spring. The submerged macrophyte communities were submitted to five different salinity levels (0, 1, 2, 4 and 6 g/1 Cl?1). In a companion paper (Grillas, van Wijck & Bonis 1993) three groups of species were distinguished on the basis of their biomass production over the salinity range 0 to 6 g/1 Cl?1: (1) glycophytes (non-salt-tolerant species), (2) salt-tolerant species and (3) halo-phytes. This part of the study describes the impact of salinity on the reproduction of the individual species during the two experiments. The species differ in their capacity to reproduce in the autumn; only Zannichelliapedunculata and Tolypella hispánica were able to produce fruits in that season. For all species reproduction was greater in spring and strongly correlated with biomass, except for Chara canescens. Differences in reproductive effort over the salinity range amplified the halophytic nature of Ruppia marítima and Chara canescens and the intolerance of Callitriche truncata and Chara contraria. For the other species, reproductive effort did not differ significantly over the salinity range. Regarding the effect of salinity on biomass and reproductive effort of individual species, there were large differences in the total weight of propagules produced at the community level and in the relative contribution of individual species. The resulting quantitative changes in the species composition of the seed bank could affect the structure of the communities by their effects on the establishment and survival of species populations.  相似文献   
69.
Precipitation variability and heatwaves are expected to intensify over much of inland Australia under most projected climate change scenarios. This will undoubtedly have impacts on the biota of Australian dryland systems. However, accurate modelling of these impacts is presently impeded by a lack of empirical research on drought/heatwave effects on native arid flora and fauna. During the 2018–2021 Australian drought, many parts of the continent's inland experienced their hottest, driest period on record. Here, we present the results of a field survey in 2021 involving indigenous rangers, scientists and national parks staff who assessed plant dieback during this drought at Ulur u-Kata Tjut a National Park (UKTNP), central Australia. Spatially randomized quadrat sampling of eight common and culturally important plants indicated the following plant death rates across UKTNP (in order of drought susceptibility): desert myrtle (Aluta maisonneuvei subsp. maisonneuvei) (91%), yellow flame grevillea (Grevillea eriostachya) (79%), Maitland's wattle (Acacia maitlandii) (67%), waxy wattle (A. melleodora) (65%), soft spinifex grass (Triodia pungens) (53%), mulga (A. aneura) (42%), desert oak (Allocasuarina decaisneana) (22%) and quandong (Santalum acuminatum) (0%). The sampling also detected that seedling recruitment was absent or minimal for all plants except soft spinifex, while a generalized linear mixed model (GLMM) indicated two-way interactions among species, plant size and stand density as important predictors of drought survival of adult plants. A substantial loss of biodiversity has occurred at UKTNP during the recent drought, with likely drivers of widespread plant mortality being extreme multi-year rainfall deficit (2019 recorded the lowest-ever annual rainfall at UKTNP [27 mm]) and record high summer temperatures (December 2019 recorded the highest-ever temperature [47.1°C]). Our findings indicate that widespread plant death and extensive vegetation restructuring will occur across arid Australia if the severity and frequency of droughts increase under climate change.  相似文献   
70.
Clinically, it is common for Class III patients with maxillary skeletal deficiency, which may result in a variety of adverse consequences. Protraction headgear and rapid maxillary expansion (PE) is an effective treatment, but its effect on upper airway hydrodynamics has not been reported. The main purpose of this study was to evaluate the changes of the flow in the upper airway after PE by computational fluid dynamics (CFD). The sample includes fifteen patients (6 males, 9 females, age 11.00 ± 1.00) and the paired T-test was used to analyze the differences between the measured data before and after treatment. The maximum flow velocity decreased from 8.42 ± 0.16 m/s to 6.98 ± 0.36 m/s (p < 0.05), and the maximum shear force decreased from 3.72 ± 1.48 Pa to 2.13 ± 0.18 Pa. The maximum negative pressure decreased from −101.78 ± 33.60 Pa to 58.15 ± 9.16 Pa, only the changes of velopharynx and glossopharynx were statistically significant; while the maximum resistance decreased from 140.88 ± 68.68 Pa/mL/s to 45.95 ± 22.96 Pa/mL/s. PE can effectively reduce the airflow resistance of the upper airway and the probability of airway collapse, thus improving the patient’s ventilation function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号